THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF AXIOM IN L-TOPOLOGICAL SPACES

被引:0
|
作者
Shi, F. G. [1 ]
Chen, P. [1 ]
机构
[1] Beijing Inst Technol, Sch Sci, Dept Math, Beijing 100081, Peoples R China
来源
IRANIAN JOURNAL OF FUZZY SYSTEMS | 2010年 / 7卷 / 01期
关键词
L-topology; T-1; axiom; T-2; Urysohn axiom; Completely Hausdorff axiom; Regularity; Completely regularity; Normality; Pointwise metric; SEPARATION AXIOMS; FUZZY; COMPACTNESS; UNIFORMITIES; THEOREMS; POINT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so is to be compatible with pointwise metrics. Some properties and characterizations are also derived.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [31] Strong Nβ-compactness in L-topological Spaces
    Zhang, Fangjuan
    Bai, Shizhong
    ADVANCES IN MECHATRONICS, AUTOMATION AND APPLIED INFORMATION TECHNOLOGIES, PTS 1 AND 2, 2014, 846-847 : 1278 - 1281
  • [32] gamma-COMPACTNESS IN L-TOPOLOGICAL SPACES
    Zahran, A. M.
    Ghareeb, A.
    Zakari, A. H.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2011, 35 (01): : 25 - 37
  • [33] beta-CONNECTEDNESS IN L-TOPOLOGICAL SPACES
    Chen, Bo
    TAMKANG JOURNAL OF MATHEMATICS, 2011, 42 (01): : 69 - 77
  • [34] Discrete dynamical systems in L-topological spaces
    Chen, L
    Kou, H
    Luo, MK
    Zhang, WN
    FUZZY SETS AND SYSTEMS, 2005, 156 (01) : 25 - 42
  • [35] Covering dimension and normality in L-topological spaces
    Thankachan Baiju
    Jacob John Sunil
    Mathematical Sciences, 2012, 6 (1)
  • [36] The semi-T3-separation axiom of Khalimsky topological spaces
    Han, Sang-Eon
    Ozcag, Selma
    FILOMAT, 2023, 37 (08) : 2539 - 2559
  • [37] BIESTERFELDTS COMPLETION AXIOM SPACES
    GAZIK, RJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) : 401 - 405
  • [38] ALMOST S*-COMPACTNESS IN L-TOPOLOGICAL SPACES
    Wen, G. F.
    Shi, F. G.
    Li, H. Y.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2008, 5 (03): : 31 - 44
  • [39] Locally bounded L-topological vector spaces
    Yan, CH
    Fang, JX
    INFORMATION SCIENCES, 2004, 159 (3-4) : 273 - 281
  • [40] Generalized Fuzzy Compactness in L-Topological Spaces
    Xu, Zhen-Guo
    Li, Hong-Yan
    Yun, Zi-Qiu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (03) : 457 - 468