High-order temporal coherences of chaotic and laser light

被引:60
|
作者
Stevens, Martin J. [1 ]
Baek, Burm [1 ]
Dauler, Eric A. [2 ,3 ]
Kerman, Andrew J. [3 ]
Molnar, Richard J. [3 ]
Hamilton, Scott A. [3 ]
Berggren, Karl K. [2 ]
Mirin, Richard P. [1 ]
Nam, Sae Woo [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] MIT, Lincoln Lab, Lexington, MA 02420 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 02期
关键词
FLUORESCENCE CORRELATION SPECTROSCOPY; SINGLE-PHOTON DETECTORS; SEMICONDUCTOR MICROCAVITY; THRESHOLD;
D O I
10.1364/OE.18.001430
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photon-sensitive elements parse a single spatial mode of an optical beam over dimensions smaller than the minimum diffraction-limited spot size. Integrating this device with four-channel time-tagging electronics to generate multi-start, multi-stop histograms enables measurement of temporal coherences up to fourth order for a continuous range of all associated time delays. We observe high-order photon bunching from a chaotic, pseudo-thermal light source, measuring maximum third-and fourth-order coherence values of 5.87 +/- 0.17 and 23.1 +/- 1.8, respectively, in agreement with the theoretically predicted values of 3! = 6 and 4! = 24. Laser light, by contrast, is confirmed to have coherence values of approximately 1 for second, third and fourth orders at all time delays. 2010 Optical Society of America
引用
收藏
页码:1430 / 1437
页数:8
相关论文
共 50 条
  • [22] Temporal coherence of ultrashort high-order harmonic pulses
    Bellini, M
    Lynga, C
    Tozzi, A
    Gaarde, MB
    Hansch, TW
    L'Huillier, A
    Wahlstrom, CG
    PHYSICAL REVIEW LETTERS, 1998, 81 (02) : 297 - 300
  • [23] Temporal Talbot phenomena in high-order dispersive media
    Duchesne, David
    Morandotti, Roberto
    Azana, Jose
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2007, 24 (01) : 113 - 125
  • [24] Temporal Network Embedding with High-Order Nonlinear Information
    Qiu, Zhenyu
    Hu, Wenbin
    Wu, Jia
    Liu, Weiwei
    Du, Bo
    Jia, Xiaohua
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5436 - 5443
  • [25] Magnetic resonance microscopic imaging based on high-order intermolecular multiple-quantum coherences
    Cho, Jee-Hyun
    Ahn, Sangdoo
    Lee, Chulhyun
    Hong, Kwan Soo
    Chung, Kee-Choo
    Chang, Suk-Kyu
    Cheong, ChaeJoon
    Warren, Warren S.
    MAGNETIC RESONANCE IMAGING, 2007, 25 (05) : 626 - 633
  • [26] Propagation effects in resonant high-order harmonic generation and high-order frequency mixing in a laser plasma
    Strelkov, V. V.
    Khokhlova, M. A.
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [27] Adaptive synchronization of high-order chaotic systems:: a feedback with low-order parametrization
    Femat, R
    Alvarez-Ramírez, J
    Fernández-Anaya, G
    PHYSICA D, 2000, 139 (3-4): : 231 - 246
  • [28] Wigner surmise for high-order level spacing distributions of chaotic systems
    Abul-Magd, AY
    Simbel, MH
    PHYSICAL REVIEW E, 1999, 60 (05): : 5371 - 5374
  • [29] Controlling high-order chaotic discrete systems by lagged adaptive adjustment
    Huang, W
    PHYSICAL REVIEW E, 2002, 65 (01): : 1 - 016215
  • [30] Parameter Identification of Chaotic Systems Based on High-Order Correlation Computations
    Wu L.-C.
    Yan Z.-X.
    Xiao J.-H.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (05): : 15 - 21