An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis

被引:147
|
作者
Cheng, Yao [1 ]
Wang, Zhiwei [1 ]
Chen, Bingyan [1 ]
Zhang, Weihua [1 ]
Huang, Guanhua [2 ]
机构
[1] Southwest Jiaotong Univ, State Key Lab Tract Power, Chengdu 610031, Sichuan, Peoples R China
[2] Beijing Haidongqing Elect & Mech Equipment Co Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Ensemble empirical mode decomposition (EEMD); Minimum entropy deconvolution (MED); Rolling element bearing; Fault diagnosis; CORRELATED KURTOSIS DECONVOLUTION; ENHANCEMENT;
D O I
10.1016/j.isatra.2019.01.038
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel time-frequency analysis method called complementary complete ensemble empirical mode decomposition (EEMD) with adaptive noise (CCEEMDAN) is proposed to analyze nonstationary vibration signals. CCEEMDAN combines the advantages of improved EEMD with adaptive noise and complementary EEMD, and it improves decomposition performance by reducing reconstruction error and mitigating the effect of mode mixing. However, because white noise mixed in with the raw vibration signal covers the whole frequency bandwidth, each mode inevitably contains some mode noise, which can easily inundate the fault-related information. This paper proposes a time-frequency analysis method based on CCEEMDAN and minimum entropy deconvolution (MED) for fault detection of rolling element bearings. First, a raw signal is decomposed into a series of intrinsic mode functions (IMFs) by using the CCEEMDAN method. Then a sensitive parameter (SP) based on adjusted kurtosis and Pearson's correlation coefficient is applied to select a sensitive mode that contains the most fault-related information. Finally, the MED is applied to enhance the fault-related impulses in the selected IMF. The fault signals of high-speed train axle-box bearing are applied to verify the effectiveness of the proposed method. Results show that the proposed method can effectively reveal axle-bearing defects' fault information. The comparisons illustrate the superiority of SP over kurtosis for selecting the sensitive mode from the resulted signal of CCEEMEDAN. Further, we conducted comparisons that highlight the superiority of our proposed method over individual CCEEMDAN and MED methods and over two other popular signal-processing methods, variational mode decomposition and fast kurtogram. (C) 2019 Published by Elsevier Ltd on behalf of ISA.
引用
收藏
页码:218 / 234
页数:17
相关论文
共 50 条
  • [11] Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing
    Lv, Yong
    Yuan, Rui
    Song, Gangbing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 81 : 219 - 234
  • [12] Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis
    Zheng, Jinde
    Cheng, Junsheng
    Yang, Yu
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 40 (01) : 136 - 153
  • [13] Adaptive periodic mode decomposition and its application in rolling bearing fault diagnosis
    Cheng, Jian
    Yang, Yu
    Li, Xin
    Cheng, Junsheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 161 (161)
  • [14] Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing
    Dang, Zhang
    Lv, Yong
    Li, Yourong
    Wei, Guoqian
    SENSORS, 2018, 18 (06)
  • [15] Noise Eliminated Ensemble Empirical Mode Decomposition for Bearing Fault Diagnosis
    Atik Faysal
    Wai Keng Ngui
    M. H. Lim
    Journal of Vibration Engineering & Technologies, 2021, 9 : 2229 - 2245
  • [16] Noise Eliminated Ensemble Empirical Mode Decomposition for Bearing Fault Diagnosis
    Faysal, Atik
    Ngui, Wai Keng
    Lim, M. H.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2021, 9 (08) : 2229 - 2245
  • [17] Rolling Bearings Fault Diagnosis Based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Nonlinear Entropy, and Ensemble SVM
    Li, Rui
    Ran, Chao
    Zhang, Bin
    Han, Leng
    Feng, Song
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [18] Fault diagnosis of rolling element bearing based on ensemble empirical mode decomposition and cross energy operator
    School of Mechanical Engineering, University of Science and Technology Beijing, Beijing
    100083, China
    Gongcheng Kexue Xuebao, (65-71):
  • [19] Complementary Ensemble Adaptive Local Iterative Filtering and Its Application to Rolling Bearing Fault Diagnosis
    Zhang, Yi
    Lv, Yong
    Ge, Mao
    IEEE ACCESS, 2021, 9 : 47275 - 47293
  • [20] Mode Selection in Variational Mode Decomposition and Its Application in Fault Diagnosis of Rolling Element Bearing
    Yadav, Pradip
    Chauhan, Shivani
    Tiwari, Prashant
    Upadhyay, S. H.
    Rakesh, Pawan Kumar
    RELIABILITY, SAFETY AND HAZARD ASSESSMENT FOR RISK-BASED TECHNOLOGIES, 2020, : 663 - 670