Monitoring Breast Cancer Response to Neoadjuvant Chemotherapy Using Ultrasound Strain Elastography

被引:54
|
作者
Fernandes, Jason [1 ]
Sannachi, Lakshmanan [1 ,8 ]
Tran, William T. [1 ,2 ,3 ,9 ]
Koven, Alexander [1 ]
Watkins, Elyse [1 ]
Hadizad, Farnoosh [1 ]
Gandhi, Sonal [5 ]
Wright, Frances [6 ]
Curpen, Belinda [7 ]
El Kaffas, Ahmed [8 ]
Faltyn, Joanna [8 ]
Sadeghi-Naini, Ali [1 ,2 ,7 ,8 ]
Czarnota, Gregory [1 ,2 ,4 ,7 ,8 ]
机构
[1] Sunnybrook Hlth Sci Ctr, Dept Radiat Oncol, Toronto, ON, Canada
[2] Univ Toronto, Dept Radiat Oncol, Toronto, ON, Canada
[3] Sheffield Hallam Univ, Ctr Hlth & Social Care Res, Sheffield, S Yorkshire, England
[4] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[5] Sunnybrook Hlth Sci Ctr, Div Med Oncol, Toronto, ON, Canada
[6] Sunnybrook Hlth Sci Ctr, Div Surg Oncol, Toronto, ON, Canada
[7] Sunnybrook Hlth Sci Ctr, Dept Med Imaging, Toronto, ON, Canada
[8] Sunnybrook Res Inst, Phys Sci, Toronto, ON, Canada
[9] Sunnybrook Res Inst, Inst Clin Evaluat Sci, Toronto, ON, Canada
来源
TRANSLATIONAL ONCOLOGY | 2019年 / 12卷 / 09期
基金
加拿大自然科学与工程研究理事会;
关键词
PATHOLOGICAL COMPLETE RESPONSE; SHEAR-WAVE ELASTOGRAPHY; WOMEN; DIFFERENTIATION; STIFFNESS; ACCURACY; THERAPY; BENIGN;
D O I
10.1016/j.tranon.2019.05.004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Strain elastography was used to monitor response to neoadjuvant chemotherapy (NAC) in 92 patients with biopsyproven, locally advanced breast cancer. Strain elastography data were collected before, during, and after NAC. Relative changes in tumor strain ratio (SR) were calculated over time, and responder status was classified according to tumor size changes. Statistical analyses determined the significance of changes in SR over time and between response groups. Machine learning techniques, such as a naive Bayes classifier, were used to evaluate the performance of the SR as a marker for Miller-Payne pathological endpoints. With pathological complete response (pCR) as an endpoint, a significant difference (P < .01) in the SR was observed between response groups as early as 2 weeks into NAC. Naive Bayes classifiers predicted pCR with a sensitivity of 84%, specificity of 85%, and area under the curve of 81% at the preoperative scan. This study demonstrates that strain elastography may be predictive of NAC response in locally advanced breast cancer as early as 2 weeks into treatment, with high sensitivity and specificity, granting it the potential to be used for active monitoring of tumor response to chemotherapy.
引用
收藏
页码:1177 / 1184
页数:8
相关论文
共 50 条
  • [21] Predicting response to neoadjuvant chemotherapy in breast cancer by biomechanics quantified with Magnetic Resonance Elastography
    Sinha, A.
    Jurrius, P.
    Darwish, O.
    Shifa, B.
    Peterson, Z.
    Jeffery, H.
    Welsh, K.
    Metafa, A.
    Spence, J.
    Kothari, A.
    Hamed, H.
    Bitsakou, G.
    Vasileios, K.
    Thorat, M.
    Shaari, E.
    Sever, A.
    Rigg, A.
    Pinder, S.
    Ralph, S.
    Purushotham, A.
    EUROPEAN JOURNAL OF CANCER, 2024, 200 : 93 - 93
  • [22] Early prediction of response to neoadjuvant chemotherapy using contrast-enhanced ultrasound in breast cancer
    Peng, Juan
    Pu, Huan
    Jia, Yan
    Chen, Chuang
    Ke, Xiao-Kang
    Zhou, Qing
    MEDICINE, 2021, 100 (19)
  • [23] A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound
    Tadayyon, Hadi
    Sannachi, Lakshmanan
    Gangeh, Mehrdad J.
    Kim, Christina
    Ghandi, Sonal
    Trudeau, Maureen
    Pritchard, Kathleen
    Tran, William T.
    Slodkowska, Elzbieta
    Sadeghi-Naini, Ali
    Czarnota, Gregory J.
    SCIENTIFIC REPORTS, 2017, 7
  • [24] A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound
    Hadi Tadayyon
    Lakshmanan Sannachi
    Mehrdad J. Gangeh
    Christina Kim
    Sonal Ghandi
    Maureen Trudeau
    Kathleen Pritchard
    William T. Tran
    Elzbieta Slodkowska
    Ali Sadeghi-Naini
    Gregory J. Czarnota
    Scientific Reports, 7
  • [25] CONTRIBUTION OF MRI FOR MONITORING RESPONSE TO NEOADJUVANT CHEMOTHERAPY IN THE MANAGEMENT OF BREAST CANCER
    Fellah, L.
    Berliere, M.
    Galant, C.
    Akle, N.
    Leconte, I.
    JBR-BTR, 2009, 92 (04): : 224 - 226
  • [26] Identification of pathological complete response after neoadjuvant chemotherapy for breast cancer: comparison of greyscale ultrasound, shear wave elastography, and MRI
    Evans, A.
    Whelehan, P.
    Thompson, A.
    Purdie, C.
    Jordan, L.
    Macaskill, J.
    Henderson, S.
    Vinnicombe, S.
    CLINICAL RADIOLOGY, 2018, 73 (10) : 910.e1 - 910.e6
  • [27] Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy for Primary Breast Cancer Comparing Interim Ultrasound, Shear Wave Elastography and MRI
    Evans, Andrew
    Whelehan, Patsy
    Thompson, Alastair
    Purdie, Colin
    Jordan, Lee
    Macaskill, Jane
    Waugh, Shelley
    Fuller-Pace, Frances
    Brauer, Katrin
    Vinnicombe, Sarah
    ULTRASCHALL IN DER MEDIZIN, 2018, 39 (04): : 422 - 431
  • [28] Evaluation of response to neoadjuvant chemotherapy using breast scintigraphy in breast cancer
    Baena-Cañada, JM
    Partida-Palma, F
    Palomo-González, MJ
    Benítez, E
    Rueda-Ramos, A
    García-Curiel, A
    MEDICINA CLINICA, 2005, 125 (16): : 601 - 605
  • [29] Monitoring response to neoadjuvant chemotherapy in triple negative breast cancer using circulating tumor DNA
    Chen, Jennifer H.
    Addanki, Sridevi
    Roy, Dhruvajyoti
    Bassett, Roland
    Kalashnikova, Ekaterina
    Spickard, Erik
    Kuerer, Henry M.
    Meas, Salyna
    Sarli, Vanessa N.
    Korkut, Anil
    White, Jason B.
    Rauch, Gaiane M.
    Tripathy, Debu
    Arun, Banu K.
    Barcenas, Carlos H.
    Yam, Clinton
    Sethi, Himanshu
    Rodriguez, Angel A.
    Liu, Minetta C.
    Moulder, Stacy L.
    Lucci, Anthony
    BMC CANCER, 2024, 24 (01)
  • [30] A Narrative Review of Ultrasound Technologies for the Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer
    Wang, Jing
    Chu, Yanhua
    Wang, Baohua
    Jiang, Tianan
    CANCER MANAGEMENT AND RESEARCH, 2021, 13 : 7885 - 7895