Approximate Bayesian inference;
Model inversion;
Variational inference;
Empirical Bayes;
D O I:
10.1016/j.jcp.2019.06.010
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
We present two approximate Bayesian inference methods for parameter estimation in partial differential equation (PDE) models with space-dependent and state-dependent parameters. We demonstrate that these methods provide accurate and cost-effective alternatives to Markov Chain Monte Carlo simulation. We assume a parameterized Gaussian prior on the unknown functions, and approximate the posterior density by a parameterized multivariate Gaussian density. The parameters of the prior and posterior are estimated from sparse observations of the PDE model's states and the unknown functions themselves by maximizing the evidence lower bound (ELBO), a lower bound on the log marginal likelihood of the observations. The first method, Laplace-EM, employs the expectation maximization algorithm to maximize the ELBO, with a Laplace approximation of the posterior on the E-step, and minimization of a Kullback-Leibler divergence on the M-step. The second method, DSVI-EB, employs the doubly stochastic variational inference (DSVI) algorithm, in which the ELBO is maximized via gradient-based stochastic optimization, with noisy gradients computed via simple Monte Carlo sampling and Gaussian backpropagation. We apply these methods to identifying diffusion coefficients in linear and nonlinear diffusion equations, and we find that both methods provide accurate estimates of posterior densities and the hyperparameters of Gaussian priors. While the Laplace-EM method is more accurate, it requires computing Hessians of the physics model. The DSVI-EB method is found to be less accurate but only requires gradients of the physics model. (C) 2019 Elsevier Inc. All rights reserved.
机构:
Univ Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5208, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
INRIA, Villeurbanne, France
Univ Montreal, Dept Mathemat & Stat, Pavillon 8 Andre Aisenstadt,2920 Chemin Tour, Montreal, PQ H3T 1J4, CanadaUniv Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5208, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
Boullu, Lois
论文数: 引用数:
h-index:
机构:
Pujo-Menjouet, Laurent
Wu, Jianhong
论文数: 0引用数: 0
h-index: 0
机构:
York Univ, Lab Ind & Appl Math, N York, ON M3J 1P3, CanadaUniv Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5208, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
机构:
Hong Kong Univ Sci & Technol, Dept Civil Engn, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Civil Engn, Hong Kong, Hong Kong, Peoples R China
机构:
Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
Emory Univ, Atlanta, GA 30322 USAGeorgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
Connolly, Mark J.
Park, Sang-Eon
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
Park, Sang-Eon
Gross, Robert E.
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Atlanta, GA 30322 USA
Emory Univ, Dept Neurosurg, Neurol, Atlanta, GA 30322 USA
Georgia Inst Technol, Biomed Engn, Atlanta, GA 30322 USAGeorgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
Gross, Robert E.
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC),
2019,
: 6454
-
6457
机构:
E China Normal Univ, Dept Math, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R China
Fu, Xianlong
Zhang, Jialin
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Math, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R China