From High-Manganese Steels to Advanced High-Entropy Alloys

被引:9
|
作者
Haase, Christian [1 ]
Barrales-Mora, Luis Antonio [2 ]
机构
[1] Rhein Westfal TH Aachen, Steel Inst, Intzestr 1, D-52072 Aachen, Germany
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, 2 Rue Marconi, F-57070 Metz, France
关键词
high-manganese steels; high-entropy alloys; alloy design; plastic deformation; annealing; microstructure; texture; mechanical properties; INDUCED PLASTICITY STEELS; STACKING-FAULT ENERGIES; FE-28MN-0.28C TWIP STEEL; TEXTURE EVOLUTION; MECHANICAL-PROPERTIES; MICROSTRUCTURE; DEFORMATION; BEHAVIOR; DESIGN; MTEX;
D O I
10.3390/met9070726
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Arguably, steels are the most important structural material, even to this day. Numerous design concepts have been developed to create and/or tailor new steels suited to the most varied applications. High-manganese steels (HMnS) stand out for their excellent mechanical properties and their capacity to make use of a variety of physical mechanisms to tailor their microstructure, and thus their properties. With this in mind, in this contribution, we explore the possibility of extending the alloy design concepts that haven been used successfully in HMnS to the recently introduced high-entropy alloys (HEA). To this aim, one HMnS steel and the classical HEA Cantor alloy were subjected to cold rolling and heat treatment. The evolution of the microstructure and texture during the processing of the alloys and the resulting properties were characterized and studied. Based on these results, the physical mechanisms active in the investigated HMnS and HEA were identified and discussed. The results evidenced a substantial transferability of the design concepts and more importantly, they hint at a larger potential for microstructure and property tailoring in the HEA.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] An overview of high-entropy alloys
    Pshdar Ahmed Ibrahim
    İskender Özkul
    Canan Aksu Canbay
    Emergent Materials, 2022, 5 : 1779 - 1796
  • [32] Refractory high-entropy alloys
    Senkov, O. N.
    Wilks, G. B.
    Miracle, D. B.
    Chuang, C. P.
    Liaw, P. K.
    INTERMETALLICS, 2010, 18 (09) : 1758 - 1765
  • [33] Application of High-Entropy Alloys
    Gromov V.E.
    Shlyarova Y.A.
    Konovalov S.V.
    Vorob’ev S.V.
    Peregudov O.A.
    Steel in Translation, 2021, 51 (10) : 700 - 704
  • [34] Editorial: Fundamentals and Challenges of Advanced Amorphous and High-Entropy Alloys
    Song, Kaikai
    Huang, Yongjiang
    Li, Ran
    Qiao, Jichao
    Wang, Zhi
    Prashanth, Konda Gokuldoss
    Sopu, Daniel
    FRONTIERS IN MATERIALS, 2022, 9
  • [35] High-entropy alloys: emerging materials for advanced functional applications
    Wang, Xin
    Guo, Wei
    Fu, Yongzhu
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (02) : 663 - 701
  • [36] Modeling the Work Hardening Behavior of High-Manganese Steels
    M. Ghasri-Khouzani
    J. R. McDermid
    Journal of Materials Engineering and Performance, 2019, 28 : 1591 - 1600
  • [37] A MOSSBAUER STUDY ON THE DEFORMED SURFACE OF HIGH-MANGANESE STEELS
    TANIMOTO, H
    NASU, S
    FUJITA, FE
    SHIMA, Y
    NAKAOKA, K
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1988, 52 (10) : 909 - 916
  • [38] Designing high-entropy alloys
    Canter, Neil
    Tribology and Lubrication Technology, 2022, 78 (11): : 18 - 19
  • [39] Nanocrystalline high-entropy alloys
    Carl C. Koch
    Journal of Materials Research, 2017, 32 : 3435 - 3444
  • [40] Progress in High-Entropy Alloys
    Chuan Zhang
    Michael C. Gao
    Shih-Kang Lin
    JOM, 2019, 71 : 3417 - 3418