Propagation delay time estimation by neural network using urban environment parameters

被引:1
|
作者
Tategami, Koyo [1 ]
Fujimoto, Mitoshi [1 ]
Kitao, Koshiro [2 ]
Inomata, Minoru [2 ]
Suyama, Satoshi [2 ]
Oda, Yasuhiro [2 ]
机构
[1] Univ Fukui, Grad Sch Engn, 3-9-1 Bunkyo, Fukui 9108507, Japan
[2] NTT DOCOMO INC, 3-6 Hikarino Oka, Yokosuka, Kanagawa 2398536, Japan
来源
IEICE COMMUNICATIONS EXPRESS | 2020年 / 9卷 / 12期
关键词
5G mobile communication system; urban street cell; neural network; propagation delay time estimation; MODEL;
D O I
10.1587/comex.2020COL0008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the 5th generation mobile communication system, introduction of small cells using low-height base station is being examined. Small cells are installed in urban street cell environments where mobiles are densely populated. Therefore, actual measurement and complicated modeling of radio wave propagation are necessary to grasp the propagation characteristics. In this paper, a simple propagation delay estimation method is proposed. In the proposed method, neural network using urban area structure parameters is applied. It is shown that the propagation delay time can be easily estimated by the proposed method without considering moving objects and trees.
引用
收藏
页码:573 / 579
页数:7
相关论文
共 50 条
  • [41] Estimation of tire–road friction for road vehicles: a time delay neural network approach
    Alexandre M. Ribeiro
    Alexandra Moutinho
    André R. Fioravanti
    Ely C. de Paiva
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [42] BLIND ESTIMATION OF REVERBERATION TIME USING DEEP NEURAL NETWORK
    Lee, Myungin
    Chang, Joon-Hyuk
    PROCEEDINGS OF 2016 5TH IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC 2016), 2016, : 308 - 311
  • [43] BLIND REVERBERATION TIME ESTIMATION USING A CONVOLUTIONAL NEURAL NETWORK
    Gamper, Hannes
    Tashev, Ivan J.
    2018 16TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC), 2018, : 136 - 140
  • [44] Evaluation of radio propagation parameters for field strength prediction using neural network
    Monteiro, Bruno
    Cavalcante, Gervasio P. S.
    Gomes, Herminio S.
    Rosario, Danileno M.
    Lima, F. F.
    Junior, H. A.
    2007 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2007, : 888 - +
  • [45] Estimation of equivalent aerodynamic parameters of an aeroelastic aircraft using neural network
    Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208 016, India
    J Inst Eng India: Aerosp Eng J, 2009, MAY (3-9):
  • [46] Estimation of the Interaction Parameters of Liquid Fe using Neural Network Computation
    Nakamoto, Masashi
    Tanaka, Toshihiro
    ISIJ INTERNATIONAL, 2020, 60 (10) : 2134 - 2140
  • [47] Radio propagation prediction using deep neural network and building occupancy estimation
    Inoue, Kazuya
    Ichige, Koichi
    Nagao, Tatsuya
    Hayashi, Takahiro
    IEICE COMMUNICATIONS EXPRESS, 2020, 9 (10): : 506 - 511
  • [48] Using Back Propagation Neural Network for Channel Estimation and Compensation in OFDM Systems
    Cheng, Chia-Hsin
    Cheng, Yung-Pei
    Huang, Yao-Hung
    Li, Wen-Ching
    2013 SEVENTH INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS (CISIS), 2013, : 340 - 345
  • [49] Effect of data structure for time series prediction using time delay neural network
    Wang, XK
    Lu, WZ
    Cao, SY
    Computational Mechanics, Proceedings, 2004, : 721 - 727
  • [50] H∞ State Estimation for Stochastic Markovian Jumping Neural Network with Time-Varying Delay and Leakage Delay
    Ya-Jun Li
    Zhao-Wen Huang
    Jing-Zhao Li
    International Journal of Automation and Computing, 2019, 16 : 329 - 340