Spherical designs and zeta functions of lattices

被引:0
|
作者
Coulangeon, Renaud [1 ]
机构
[1] Univ Bordeaux 1, Inst Math Bordeaux, F-33405 Talence, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We set up a connection between the theory of spherical designs and the question of minima of Epstein's zeta function. More precisely, we prove that a Euclidean lattice, all layers of which hold a 4-design, achieves a local minimum of Epstein's zeta function, at least at any real s > n/2. We deduce from this a new proof of Sarnak and Strombergsson's theorem asserting that the root lattices D-4 and E-8, as well as the Leech lattice Lambda(24), achieve a strict local minimum of Epstein's zeta function at any s > 0. Furthermore, our criterion enables us to extend their theorem to all the so-called extremal modular lattices ( up to certain restrictions) using a theorem of Bachoc and Venkov, and to other classical families of lattices ( e. g., the Barnes-Wall lattices).
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Percolation thresholds, critical exponents, and scaling functions on spherical random lattices and their duals
    Huang, MC
    Hsu, HP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (03): : 383 - 395
  • [23] ABSOLUTE ZETA FUNCTIONS FOR ZETA FUNCTIONS OF QUANTUM CELLULAR AUTOMATA
    Akahori, Jiro
    Konno, Norio
    Sato, Iwao
    QUANTUM INFORMATION & COMPUTATION, 2023, 23 (15-16) : 1261 - 1274
  • [24] Continuity of the hyperbolic zeta function of lattices
    Dobrovolskii, NM
    Roshchenya, AL
    Rebrova, IY
    MATHEMATICAL NOTES, 1998, 63 (3-4) : 460 - 463
  • [25] Continuity of the hyperbolic zeta function of lattices
    N. M. Dobrovolskii
    A. L. Roshchenya
    I. Yu. Rebrova
    Mathematical Notes, 1998, 63 : 460 - 463
  • [26] Spherical Framelets from Spherical Designs
    Xiao, Yuchen
    Zhuang, Xiaosheng
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (04): : 2072 - 2104
  • [27] SPHERICAL DESIGNS FOR APPROXIMATIONS ON SPHERICAL CAPS
    Li, Chao
    Chen, Xiaojun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (06) : 2506 - 2528
  • [28] On Schur multiple zeta functions: A combinatoric generalization of multiple zeta functions
    Nakasuji, Maki
    Phuksuwan, Ouamporn
    Yamasaki, Yoshinori
    ADVANCES IN MATHEMATICS, 2018, 333 : 570 - 619
  • [29] Zeta functions over zeros of general zeta and L-functions
    Voros, A
    Zeta Functions, Topology and Quantum Physics, 2005, 14 : 171 - 196
  • [30] SPHERICAL DESIGNS ATTACHED TO EXTREMAL LATTICES AND THE MODULO p PROPERTY OF FOURIER COEFFICIENTS OF EXTREMAL MODULAR FORMS
    Bannai, Eiichi
    Koike, Masao
    Shinohara, Masashi
    Tagami, Makoto
    MOSCOW MATHEMATICAL JOURNAL, 2006, 6 (02) : 225 - 264