Scene Graph Generation With Hierarchical Context

被引:22
|
作者
Ren, Guanghui [1 ,2 ]
Ren, Lejian [1 ]
Liao, Yue [3 ]
Liu, Si [3 ]
Li, Bo [3 ]
Han, Jizhong [1 ]
Yan, Shuicheng [4 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol SIAT, Guangdong Prov Key Lab Comp Vis & Virtual Real Te, Shenzhen 518055, Peoples R China
[3] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[4] YITU Technol, Beijing 100086, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Correlation; Feature extraction; Depression; Visualization; Learning systems; Silicon; Generative adversarial networks; Attention mechanism; context aggregation; scene graph generation;
D O I
10.1109/TNNLS.2020.2979270
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene graph generation has received increasing attention in recent years. Enhancing the predicate representations is an important entry point to this task. There are various methods to fully investigate the context of representation enhancement. In this brief, we analyze the decisive factors that can significantly affect the relation detection results. Our analysis shows that spatial correlations between objects, focused regions of objects, and global hints related to the relations have strong influences in relation prediction and contradiction elimination. Based on our analysis, we propose a hierarchical context network (HCNet) to generate a scene graph. HCNet consists of three contexts, including interaction context, depression context, and global context, which integrates information from pair, object, and graph levels. The experiments show that our method outperforms the state-of-the-art methods on the Visual Genome (VG) data set.
引用
收藏
页码:909 / 915
页数:7
相关论文
共 50 条
  • [31] Review on scene graph generation methods
    Monesh, S.
    Senthilkumar, N. C.
    MULTIAGENT AND GRID SYSTEMS, 2024, 20 (02) : 129 - 160
  • [32] Adversarial Attacks on Scene Graph Generation
    Zhao, Mengnan
    Zhang, Lihe
    Wang, Wei
    Kong, Yuqiu
    Yin, Baocai
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 3210 - 3225
  • [33] Panoptic Video Scene Graph Generation
    Yang, Jingkang
    Peng, Wenxuan
    Li, Xiangtai
    Guo, Zujin
    Chen, Liangyu
    Li, Bo
    Ma, Zheng
    Zhou, Kaiyang
    Zhang, Wayne
    Loy, Chen Change
    Liu, Ziwei
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 18675 - 18685
  • [34] Heterogeneous Learning for Scene Graph Generation
    He, Yunqing
    Ren, Tongwei
    Tang, Jinhui
    Wu, Gangshan
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 4704 - 4713
  • [35] Graph-LSTM with Global Attribute for Scene Graph Generation
    Shao, Tong
    Wu, Dapeng Oliver
    Journal of Physics: Conference Series, 2021, 2003 (01)
  • [36] Dynamic Gated Graph Neural Networks for Scene Graph Generation
    Khademi, Mahmoud
    Schulte, Oliver
    COMPUTER VISION - ACCV 2018, PT VI, 2019, 11366 : 669 - 685
  • [37] Atom correlation based graph propagation for scene graph generation
    Lin, Bingqian
    Zhu, Yi
    Liang, Xiaodan
    PATTERN RECOGNITION, 2022, 122
  • [38] Boosting Scene Graph Generation with Contextual Information
    Sun, Shiqi
    Huang, Danlan
    Tao, Xiaoming
    Pan, Chengkang
    Liu, Guangyi
    Chen, Changwen
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (02)
  • [39] RelTR: Relation Transformer for Scene Graph Generation
    Cong, Yuren
    Yang, Michael Ying
    Rosenhahn, Bodo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11169 - 11183
  • [40] CONTEXTUAL LABEL TRANSFORMATION FOR SCENE GRAPH GENERATION
    Lee, Wonhee
    Kim, Sungeun
    Kim, Gunhee
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2533 - 2537