Distance-regular subgraphs in a distance-regular graph .4.

被引:4
|
作者
Hiraki, A [1 ]
机构
[1] OSAKA KYOIKU UNIV,DIV MATH SCI,KASHIWARE,OSAKA 582,JAPAN
基金
日本学术振兴会;
关键词
D O I
10.1006/eujc.1996.0128
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be a distance-regular graph with a(1) > 0, r = max{j \ (c(j), a(j), b(j)) = (c(1), a(1), b(1))} greater than or equal to 2 and a(i) = a(1)c(i), for 1 less than or equal to i less than or equal to 2r. Take any u and v in Gamma at distance r + 1. We show that there exists a collinearity graph of a generalized 2(r + 1)-gon of order (a(1) + 1, c(r+1) - 1) containing u and v as a subgraph in Gamma. (C) 1997 Academic Press Limited.
引用
收藏
页码:635 / 645
页数:11
相关论文
共 50 条
  • [21] Characterization of certain distance-regular graphs by forbidden subgraphs
    Kabanov, V. V.
    Makhnev, A. A.
    Paduchikh, D. V.
    DOKLADY MATHEMATICS, 2007, 75 (03) : 420 - 423
  • [22] Distance-regular graphs
    van Dam, Edwin R.
    Koolen, Jack H.
    Tanaka, Hajime
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, : 1 - 156
  • [23] Characterization of certain distance-regular graphs by forbidden subgraphs
    V. V. Kabanov
    A. A. Makhnev
    D. V. Paduchikh
    Doklady Mathematics, 2007, 75 : 420 - 423
  • [24] An inequality on the cosines of a tight distance-regular graph
    Pascasio, AA
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 325 (1-3) : 147 - 159
  • [25] Weakly distance-regular digraphs whose underlying graphs are distance-regular, I
    Yang, Yuefeng
    Zeng, Qing
    Wang, Kaishun
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) : 827 - 847
  • [26] On automorphisms of a distance-regular graph with intersection array
    Vasilyevna, Bitkina Viktoriya
    Kazbekovna, Gutnova Alina
    Makhnev, Alexandr Alekseevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 1040 - 1051
  • [27] Strongly Closed Subgraphs in a Distance-Regular Graph with c2 > 1
    Akira Hiraki
    Graphs and Combinatorics, 2008, 24 : 537 - 550
  • [28] The local eigenvalues of a bipartite distance-regular graph
    MacLean, Mark S.
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 45 : 115 - 123
  • [29] The Q -polynomial idempotents of a distance-regular graph
    Jurisic, Aleksandar
    Terwilliger, Paul
    Zitnik, Arjana
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (06) : 683 - 690
  • [30] AUTOMORPHISMS OF A DISTANCE-REGULAR GRAPH WITH AN INTERSECTION ARRAY
    Makhnev, A. A.
    Bitkina, V. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 777 - 785