A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia

被引:18
|
作者
Zheng, Jianwei [1 ]
Fu, Guohua [2 ]
Abudayyeh, Islam [3 ]
Yacoub, Magdi [4 ]
Chang, Anthony [5 ]
Feaster, William W. [5 ]
Ehwerhemuepha, Louis [5 ]
El-Askary, Hesham [1 ,6 ]
Du, Xianfeng [2 ]
He, Bin [2 ]
Feng, Mingjun [2 ]
Yu, Yibo [2 ]
Wang, Binhao [2 ]
Liu, Jing [2 ]
Yao, Hai [7 ]
Chu, Huimin [2 ]
Rakovski, Cyril [1 ]
机构
[1] Chapman Univ, Computat & Data Sci, Orange, CA USA
[2] Ningbo First Hosp Zhejiang Univ, Dept Cardiol, Hangzhou, Peoples R China
[3] Loma Linda Univ, Dept Cardiol, Loma Linda, CA USA
[4] Imperial Coll London, Harefield Heart Sci Ctr, London, England
[5] CHOC Childrens Hosp, Orange, CA USA
[6] Alexandria Univ, Dept Environm Sci, Fac Sci, Alexandria, Egypt
[7] Zhejiang Cachet Jetboom Med Devices Co Ltd, Hangzhou, Peoples R China
关键词
outflow tract ventricular tachycardia; catheter ablation; electrocardiography; classification; artificial intelligence algorithm; OPTIMAL ABLATION SITE; ELECTROCARDIOGRAPHIC CRITERION; ECG ALGORITHM; ORIGIN; TRANSITION; LEAD;
D O I
10.3389/fphys.2021.641066
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Introduction Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model. Methods We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold. Results The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44-99.99), weighted F1-score of 98.46 (90-100), AUC of 98.99 (96.89-100), sensitivity (SE) of 96.97 (82.54-99.89), and specificity (SP) of 100 (62.97-100). Conclusions The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Rapid Electrocardiographic Algorithm to Differentiate Repetitive Monomorphic Ventricular Tachycardia between Right Outflow Tract and Left Side Origin
    Jia, Y. H.
    Ma, J.
    Li, X.
    Yao, Y.
    Zhang, K. J.
    Fang, P. H.
    Zhang, S.
    Chu, J. M.
    CARDIOLOGY, 2009, 114 : 33 - 33
  • [32] Metastatic Melanoma of the Right Ventricular Outflow Tract as a Cause of Ventricular Tachycardia
    Wada, Akira
    Winner, Marshall, III
    Houmsse, Mahmoud
    TEXAS HEART INSTITUTE JOURNAL, 2014, 41 (01) : 103 - 104
  • [33] RIGHT VENTRICULAR OUTFLOW TRACT VENTRICULAR TACHYCARDIA AS A RESULT OF UNCONTROLLED HYPERTHYROIDISM
    Lee, Abraham
    Gao, Lin
    Sheung, Nicole
    Sewani, Asif
    Carayannopoulos, George
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 2719 - 2719
  • [34] Catheter mapping and ablation of right ventricular outflow tract ventricular tachycardia
    Miller, JM
    Pezeshkian, NG
    Yadav, AV
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2006, 17 (07) : 800 - 802
  • [35] CARDIAC LIPOMA PRESENTING AS RIGHT VENTRICULAR OUTFLOW TRACT VENTRICULAR TACHYCARDIA
    Sandhu, Charnjeet
    Hashmi, Mohammad
    Sandhu, Uday Gajjandra
    Rathod, Ankit
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 470 - 470
  • [36] An electrocardiographic diagnostic model for differentiating left from right ventricular outflow tract tachycardia origin
    He, Zhuoqiao
    Liu, Ming
    Yu, Min
    Lu, Nan
    Li, Jia
    Xu, Tan
    Zhu, Jinxiu
    O'Gara, Mary Clare
    O'Meara, Michael
    Ye, Hong
    Tan, Xuerui
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2018, 29 (06) : 908 - 915
  • [37] Idiopathic right ventricular outflow tract tachycardia: No longer idiopathic?
    Sinha, Sunil
    Calkins, Hugh
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2006, 17 (07) : 776 - 776
  • [38] NONSUSTAINED RIGHT VENTRICULAR OUTFLOW TRACT TACHYCARDIA - IMPLICATIONS AND MECHANISM
    KERR, CR
    RITCHIE, AH
    QI, A
    YEUNG, J
    CLINICAL RESEARCH, 1987, 35 (03): : A291 - A291
  • [39] The autonomic neural mechanism of right ventricular outflow tract tachycardia
    Chang, Hung-Yu
    Lo, Li-Wei
    Chen, Yu-Ruey
    Chou, Yu-Hui
    Lin, Wei-Lun
    Lin, Yenn-Jiang
    Yin, Wei-Hsian
    Feng, An-Ning
    Chen, Shih-Ann
    AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 2018, 212 : 10 - 16
  • [40] Left ventricular outflow tract tachycardia including ventricular tachycardia from the aortic cusps and epicardial ventricular tachycardia
    Chun, K. R. Julian
    Satomi, Kazuhiro
    Kuck, Karl-Heinz
    Ouyang, Feifan
    Antz, Matthias
    HERZ, 2007, 32 (03) : 226 - 232