On diffusion approximation with discontinuous coefficients

被引:12
|
作者
Krylov, NV [1 ]
Liptser, R
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
关键词
diffusion approximation; stochastic differential equations; weak convergence;
D O I
10.1016/S0304-4149(02)00181-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Convergence of stochastic processes with jumps to diffusion processes is investigated in the case when the limit process has discontinuous coefficients. An example is given in which the diffusion approximation of a queueing model yields a diffusion process with discontinuous diffusion and drift coefficients. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:235 / 264
页数:30
相关论文
共 50 条
  • [41] A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients
    Lejay, A
    Martinez, M
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (01): : 107 - 139
  • [42] THE MULTI-GRID METHOD FOR THE DIFFUSION EQUATION WITH STRONGLY DISCONTINUOUS COEFFICIENTS
    ALCOUFFE, RE
    BRANDT, A
    DENDY, JE
    PAINTER, JW
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (04): : 430 - 454
  • [43] A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients
    K. Mustapha
    B. Abdallah
    K. M. Furati
    M. Nour
    Numerical Algorithms, 2016, 73 : 517 - 534
  • [44] Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients
    Doubova, A
    Osses, A
    Puel, JP
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 : 621 - 661
  • [45] Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations
    Bonnaillie-Noel, V.
    Carrillo, J. A.
    Goudon, T.
    Pavliotis, G. A.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1536 - 1569
  • [46] A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients
    Mustapha, K.
    Abdallah, B.
    Furati, K. M.
    Nour, M.
    NUMERICAL ALGORITHMS, 2016, 73 (02) : 517 - 534
  • [47] A FEM for singularly perturbed diffusion problems with discontinuous coefficients and concentrated factors
    Zlateva, KZ
    ANALYTICAL AND NUMERICAL METHODS FOR CONVECTION-DOMINATED AND SINGULARLY PERTURBED PROBLEMS, 2000, : 265 - 271
  • [48] Finite volume element approximation for nonlinear diffusion problems with degenerate diffusion coefficients
    Wu, Dan
    Yue, Jingyan
    Yuan, Guangwei
    Lv, Junliang
    APPLIED NUMERICAL MATHEMATICS, 2019, 140 : 23 - 47
  • [49] DISCONTINUOUS GALERKIN APPROXIMATION OF RELAXATION MODELS FOR LINEAR AND NONLINEAR DIFFUSION EQUATIONS
    Cavalli, Fausto
    Naldi, Giovanni
    Perugia, Ilaria
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01): : A105 - A136
  • [50] Analysis of Markov Chain Approximation for Diffusion Models with Nonsmooth Coefficients
    Zhang, Gongqiu
    Li, Lingfei
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2022, 13 (03): : 1144 - 1190