Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

被引:40
|
作者
Lisitsa, Vadim [1 ,2 ]
Tcheverda, Vladimir [1 ,3 ]
Botter, Charlotte [4 ]
机构
[1] RAS, SB, Inst Petr Geol & Geophys, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Kazakh British Tech Univ, Alma Ata, Kazakhstan
[4] Univ Stavanger, Stavanger, Norway
基金
俄罗斯基础研究基金会;
关键词
Discontinuous Galerkin method; Finite differences; Wave propagation; PERFECTLY MATCHED LAYER; ABSORBING BOUNDARY-CONDITIONS; MESH REFINEMENT METHOD; NUMERICAL-SIMULATION; ELEMENT-METHOD; ELASTIC-WAVES; UNSTRUCTURED MESHES; HYPERBOLIC SYSTEMS; P-WAVE; VELOCITY;
D O I
10.1016/j.jcp.2016.02.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. In this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:142 / 157
页数:16
相关论文
共 50 条
  • [41] A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation
    Terrana, S.
    Vilotte, J. P.
    Guillot, L.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 213 (01) : 574 - 602
  • [42] A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation
    Terrana S.
    Vilotte J.P.
    Guillot L.
    Terrana, S. (terrana@mit.edu), 2018, Oxford University Press (213) : 574 - 602
  • [43] A discontinuous Galerkin method for the wave equation
    Adjerid, Slimane
    Temimi, Helmi
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (5-8) : 837 - 849
  • [44] Discontinuous Galerkin Method for Interface Crack Propagation
    Stan, F.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2008, 1 (Suppl 1) : 1127 - 1130
  • [45] An efficient discontinuous Galerkin method for aeroacoustic propagation
    Rinaldi, R. Della Ratta
    Iob, A.
    Arina, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 69 (09) : 1473 - 1495
  • [46] Discontinuous Galerkin Method for Interface Crack Propagation
    F. Stan
    International Journal of Material Forming, 2008, 1 : 1127 - 1130
  • [47] Discontinuous Galerkin methods for wave propagation in poroelastic media
    de la Puente, Josep
    Dumbser, Michael
    Kaeser, Martin
    Igel, Heiner
    GEOPHYSICS, 2008, 73 (05) : T77 - T97
  • [48] A Discontinuous Galerkin Coupled Wave Propagation/Circulation Model
    Meixner, Jessica
    Dietrich, J. Casey
    Dawson, Clint
    Zijlema, Marcel
    Holthuijsen, Leo H.
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 59 (02) : 334 - 370
  • [49] A Discontinuous Galerkin Coupled Wave Propagation/Circulation Model
    Jessica Meixner
    J. Casey Dietrich
    Clint Dawson
    Marcel Zijlema
    Leo H. Holthuijsen
    Journal of Scientific Computing, 2014, 59 : 334 - 370
  • [50] Discontinuous Galerkin Methods for Acoustic Wave Propagation in Polygons
    Fabian Müller
    Dominik Schötzau
    Christoph Schwab
    Journal of Scientific Computing, 2018, 77 : 1909 - 1935