Text-mining approach to evaluate terms for ontology development

被引:16
|
作者
Tsoi, Lam C. [1 ]
Patel, Ravi [1 ]
Zhao, Wenle [1 ]
Zheng, W. Jim [1 ]
机构
[1] Med Univ S Carolina, Dept Biostat Bioinformat & Epidemiol, Bioinformat Grad Program, Charleston, SC 29464 USA
关键词
Ontology development; Hypergeometric test; PubMed; Text mining; GENE-ONTOLOGY; MICROARRAY DATA; INFORMATION; ANNOTATION; SOFTWARE; DOMAIN; TOOL; GO;
D O I
10.1016/j.jbi.2009.03.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Developing ontologies to account for the complexity of biological systems requires the time intensive collaboration of many participants with expertise in various fields. While each participant may contribute to construct a list of terms for ontology development, no objective methods have been developed to evaluate how relevant each of these terms is to the intended domain. We have developed a computational method based on a hypergeometric enrichment test to evaluate the relevance of such terms to the intended domain. The proposed method uses the PubMed literature database to evaluate whether each potential term for ontology development is overrepresented in the abstracts that discuss the particular domain. This evaluation provides an objective approach to assess terms and prioritize them for ontology development. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:824 / 830
页数:7
相关论文
共 50 条
  • [31] Automated Generation of Coding Rules: Text-Mining Approach to ISO 26000
    Nakatoh, Tetsuya
    Uchida, Satoru
    Ishita, Emi
    Oga, Toru
    PROCEEDINGS 2016 5TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS IIAI-AAI 2016, 2016, : 154 - 158
  • [32] Text-mining spat heats up
    Van Noorden, Richard
    NATURE, 2013, 495 (7441) : 295 - 295
  • [33] Text-mining offers clues to success
    Sara Reardon
    Nature, 2014, 509 : 410 - 410
  • [34] Text-mining assisted regulatory annotation
    Stein Aerts
    Maximilian Haeussler
    Steven van Vooren
    Obi L Griffith
    Paco Hulpiau
    Steven JM Jones
    Stephen B Montgomery
    Casey M Bergman
    Genome Biology, 9
  • [35] A text-mining analysis of the human phenome
    van Driel, MA
    Bruggeman, J
    Vriend, G
    Brunner, HG
    Leunissen, JA
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2006, 14 (05) : 535 - 542
  • [36] The future of metaverse adoption: A behavioral reasoning perspective with a text-mining approach
    Shukla, Anuja
    Mishra, Anubhav
    Rana, Nripendra P.
    Banerjee, Sohom
    JOURNAL OF CONSUMER BEHAVIOUR, 2024, 23 (05) : 2217 - 2233
  • [37] Understanding consumers' online fashion renting experiences: A text-mining approach
    Lang, Chunmin
    Li, Muzhen
    Zhao, Li
    SUSTAINABLE PRODUCTION AND CONSUMPTION, 2020, 21 : 132 - 144
  • [38] A text-mining analysis of the human phenome
    Marc A van Driel
    Jorn Bruggeman
    Gert Vriend
    Han G Brunner
    Jack A M Leunissen
    European Journal of Human Genetics, 2006, 14 : 535 - 542
  • [39] Text-mining offers clues to success
    Reardon, Sara
    NATURE, 2014, 509 (7501) : 410 - 410
  • [40] Creation of Market Categories through Product Strategy: A Text-Mining Approach
    Imai, Marina
    JOURNAL OF ASIAN FINANCE ECONOMICS AND BUSINESS, 2021, 8 (02): : 439 - 451