Item-Based Collaborative Filtering Recommendation using Self-Organizing Map

被引:0
|
作者
Gong, SongJie [1 ]
Ye, HongWu [2 ]
Zhu, XiaoMing [1 ]
机构
[1] Zhejiang Business Technol Inst, Ningbo 315012, Zhejiang, Peoples R China
[2] Zhejiang Text & Fash Coll, Ningbo 315211, Zhejiang, Peoples R China
关键词
Collaborative Filtering; Recommender System; Self-organizing Map; ALGORITHMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recommender systems can help people to find interesting things and they are widely used in Electronic Commerce. Collaborative filtering technique has been proved to be one of the most successful techniques in recommender systems. The main problems of collaborative filtering are about prediction accuracy, response time, data sparsity and scalability. To solve some of these problems, this paper presented an item-based collaborative filtering recommendation algorithm using self-organizing map. Firstly, it employs clustering function of self-organizing map to form nearest neighbors of the target item. Then, it produces prediction of the target user to the target item using item-based collaborative filtering. The item-based collaborative filtering recommendation algorithm using self-organizing map can efficiently improve the scalability and promise to make recommendations more accurately than conventional collaborative filtering.
引用
收藏
页码:4029 / +
页数:2
相关论文
共 50 条
  • [21] Analysis on Item-Based and User-Based Collaborative Filtering for Movie Recommendation System
    Shrivastava, Neha
    Gupta, Surendra
    2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 654 - 656
  • [22] Fuzzy Fingerprints for Item-Based Collaborative Filtering
    Carvalho, Andre
    Calado, Pavel
    Carvalho, Joao Paulo
    ADVANCES IN FUZZY LOGIC AND TECHNOLOGY 2017, VOL 1, 2018, 641 : 419 - 430
  • [23] An optimized item-based collaborative filtering algorithm
    Ajaegbu, Chigozirim
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (12) : 10629 - 10636
  • [24] A Temporal Item-Based Collaborative Filtering Approach
    Ren, Lei
    Gu, Junzhong
    Xia, Weiwei
    SIGNAL PROCESSING, IMAGE PROCESSING AND PATTERN RECOGNITION, 2011, 260 : 414 - +
  • [25] An optimized item-based collaborative filtering algorithm
    Chigozirim Ajaegbu
    Journal of Ambient Intelligence and Humanized Computing, 2021, 12 : 10629 - 10636
  • [26] User Relevance for Item-Based Collaborative Filtering
    Latha, R.
    Nadarajan, R.
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2013, 2013, 8104 : 337 - 347
  • [27] A Hybrid Collaborative Clustering Using Self-Organizing Map
    Filali, Ameni
    Jlassi, Chiraz
    Arous, Najet
    2017 IEEE/ACS 14TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2017, : 709 - 716
  • [28] CBMR: An optimized MapReduce for item-based collaborative filtering recommendation algorithm with empirical analysis
    Li, Chenyang
    He, Kejing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (10):
  • [29] Pipeline Item-based Collaborative Filtering based on MapReduce
    Zhao, Zhi-Lin
    Wang, Chang-Dong
    Wan, Yuan-Yu
    Huang, Zi-Wei
    Lai, Jian-Huang
    PROCEEDINGS 2015 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING BDCLOUD 2015, 2015, : 9 - 14
  • [30] Combining User-based and Item-based Collaborative Filtering Techniques to Improve Recommendation Diversity
    Wang, Jing
    Yin, Jian
    PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 661 - 665