Model for nonequilibrium wetting transitions in two dimensions

被引:66
|
作者
Hinrichsen, H
Livi, R
Mukamel, D
Politi, A
机构
[1] MAX PLANCK INST KOMPLEXER SYST,D-01187 DRESDEN,GERMANY
[2] UNIV FLORENCE,INFM,DIPARTIMENTO FIS,I-50125 FLORENCE,ITALY
[3] UNIV FLORENCE,IST NAZL FIS NUCL,DIPARTIMENTO FIS,I-50125 FLORENCE,ITALY
[4] IST NAZL OTTICA,I-50125 FLORENCE,ITALY
关键词
D O I
10.1103/PhysRevLett.79.2710
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple two-dimensional (2D) model of a phase growing on a substrate is introduced. The model is characterized by an adsorption rate q, and a desorption rate p. It exhibits a wetting transition which may be viewed as an unbinding transition of an interface from a wall. For p = 1, the model may be mapped onto an exactly soluble equilibrium model exhibiting complete wetting with critical exponents gamma = 1/3 for the diverging interface width and x(0) = 1 for the zero-level occupation. For 0 < p not equal 1 a crossover to different exponents is observed which is related to a Kardar-Parisi-Zhang-type nonlinearity.
引用
收藏
页码:2710 / 2713
页数:4
相关论文
共 50 条
  • [31] Wetting transitions
    Bonn, D
    Ross, D
    Bertrand, E
    Ragil, K
    Shahidzadeh, N
    Broseta, D
    Meunier, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 306 (1-4) : 279 - 286
  • [32] Wetting transitions
    Bonn, D
    Ross, D
    REPORTS ON PROGRESS IN PHYSICS, 2001, 64 (09) : 1085 - 1163
  • [33] Depinning and wetting in nonequilibrium systems
    de los Santos, F
    da Gama, MMT
    Muñoz, MA
    MODELING OF COMPLEX SYSTEMS, 2003, 661 : 102 - 106
  • [34] Nonequilibrium wetting of finite samples
    Kissinger, T
    Kotowicz, A
    Kurz, O
    Ginelli, F
    Hinrichsen, H
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 15 - 31
  • [35] Wetting under nonequilibrium conditions
    Hinrichsen, H
    Livi, R
    Mukamel, D
    Politi, A
    PHYSICAL REVIEW E, 2003, 68 (04):
  • [36] Site percolation and phase transitions in two dimensions
    Fortunato, S
    PHYSICAL REVIEW B, 2002, 66 (05): : 1 - 5
  • [37] Critical droplets and phase transitions in two dimensions
    Fortunato, S
    PHYSICAL REVIEW B, 2003, 67 (01):
  • [38] Nonequilibrium relaxation analysis of frustrated XY models in two dimensions
    Ozeki, Y
    Ito, N
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XV, 2003, 90 : 42 - 47
  • [39] Spatiotemporal chaos and nonequilibrium transitions in a model excitable medium
    Pande, Ashwin
    Pandit, Rahul
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (06): : 6448 - 6460
  • [40] Nonequilibrium relaxation analysis of gauge glass models in two dimensions
    Ozeki, Y
    Ogawa, K
    PHYSICAL REVIEW B, 2005, 71 (22):