Model for nonequilibrium wetting transitions in two dimensions

被引:66
|
作者
Hinrichsen, H
Livi, R
Mukamel, D
Politi, A
机构
[1] MAX PLANCK INST KOMPLEXER SYST,D-01187 DRESDEN,GERMANY
[2] UNIV FLORENCE,INFM,DIPARTIMENTO FIS,I-50125 FLORENCE,ITALY
[3] UNIV FLORENCE,IST NAZL FIS NUCL,DIPARTIMENTO FIS,I-50125 FLORENCE,ITALY
[4] IST NAZL OTTICA,I-50125 FLORENCE,ITALY
关键词
D O I
10.1103/PhysRevLett.79.2710
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple two-dimensional (2D) model of a phase growing on a substrate is introduced. The model is characterized by an adsorption rate q, and a desorption rate p. It exhibits a wetting transition which may be viewed as an unbinding transition of an interface from a wall. For p = 1, the model may be mapped onto an exactly soluble equilibrium model exhibiting complete wetting with critical exponents gamma = 1/3 for the diverging interface width and x(0) = 1 for the zero-level occupation. For 0 < p not equal 1 a crossover to different exponents is observed which is related to a Kardar-Parisi-Zhang-type nonlinearity.
引用
收藏
页码:2710 / 2713
页数:4
相关论文
共 50 条
  • [2] DEPINNING AND WETTING TRANSITIONS IN ONE AND 2 DIMENSIONS
    CHUI, ST
    MA, KB
    PHYSICAL REVIEW B, 1983, 28 (05): : 2555 - 2560
  • [3] Numerical study of a model for nonequilibrium wetting
    Barato, A. C.
    Hinrichsen, H.
    de Oliveira, M. J.
    PHYSICAL REVIEW E, 2008, 77 (01):
  • [4] INTERMEDIATE FLUCTUATION REGIME FOR WETTING TRANSITIONS IN 2 DIMENSIONS
    LIPOWSKY, R
    NIEUWENHUIZEN, TM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (02): : L89 - L94
  • [5] Quantum wetting transitions in two dimensions: An alternative path to non-universal interfacial singularities
    Jakubczyk, P.
    Napiorkowski, M.
    Benitez, F.
    EPL, 2015, 110 (01)
  • [6] Nonequilibrium Wetting
    Andre Cardoso Barato
    Journal of Statistical Physics, 2010, 138 : 728 - 766
  • [7] Nonequilibrium Wetting
    Barato, Andre Cardoso
    JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (4-5) : 728 - 766
  • [8] Percolation transitions in two dimensions
    Feng, Xiaomei
    Deng, Youjin
    Blote, Henk W. J.
    PHYSICAL REVIEW E, 2008, 78 (03):
  • [9] Phase transitions in a nonequilibrium percolation model
    Clar, S
    Drossel, B
    Schenk, K
    Schwabl, F
    PHYSICAL REVIEW E, 1997, 56 (03): : 2467 - 2480
  • [10] First-order transitions in a two-dimensional nonequilibrium replicator model
    Cardozo, GO
    Fontanari, JF
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 359 : 478 - 494