Cross Pixel Optical-Flow Similarity for Self-supervised Learning

被引:24
|
作者
Mahendran, Aravindh [1 ]
Thewlis, James [1 ]
Vedaldi, Andrea [1 ]
机构
[1] Univ Oxford, Visual Geometry Grp, Oxford, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Self-supervised learning; Motion; Convolutional neural network;
D O I
10.1007/978-3-030-20873-8_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel method for learning convolutional neural image representations without manual supervision. We use motion cues in the form of optical-flow, to supervise representations of static images. The obvious approach of training a network to predict flow from a single image can be needlessly difficult due to intrinsic ambiguities in this prediction task. We instead propose a much simpler learning goal: embed pixels such that the similarity between their embeddings matches that between their optical-flow vectors. At test time, the learned deep network can be used without access to video or flow information and transferred to tasks such as image classification, detection, and segmentation. Our method, which significantly simplifies previous attempts at using motion for self-supervision, achieves state-of-the-art results in self-supervision using motion cues, and is overall state of the art in self-supervised pre-training for semantic image segmentation, as demonstrated on standard benchmarks.
引用
收藏
页码:99 / 116
页数:18
相关论文
共 50 条
  • [21] Self-supervised learning for effective denoising of flow fields
    Yu, Linqi
    Yousif, Mustafa Z.
    Zhou, Dan
    Zhang, Meng
    Lee, Jung Sub
    Lim, Hee-Chang
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [22] Optical Flow Estimation through Fusion Network based on Self-supervised Deep Learning
    Liu, Cong
    Shi, Dianxi
    Li, Ruihao
    Xu, Huachi
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [23] Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural Networks
    Hagenaars, Jesse J.
    Paredes-Valles, Federico
    de Croon, Guido C. H. E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [24] Patient Similarity using Electronic Health Records and Self-supervised Learning
    Dao, Hong N.
    Paik, Incheon
    2023 IEEE 16TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP, MCSOC, 2023, : 105 - 110
  • [25] Noise Suppression With Similarity-Based Self-Supervised Deep Learning
    Niu, Chuang
    Li, Mengzhou
    Fan, Fenglei
    Wu, Weiwen
    Guo, Xiaodong
    Lyu, Qing
    Wang, Ge
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (06) : 1590 - 1602
  • [26] Learning Where to Learn in Cross-View Self-Supervised Learning
    Huang, Lang
    You, Shan
    Zheng, Mingkai
    Wang, Fei
    Qian, Chen
    Yamasaki, Toshihiko
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14431 - 14440
  • [27] Cross-Architecture Self-supervised Video Representation Learning
    Guo, Sheng
    Xiong, Zihua
    Zhong, Yujie
    Wang, Limin
    Guo, Xiaobo
    Han, Bing
    Huang, Weilin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19248 - 19257
  • [28] Gated Self-supervised Learning for Improving Supervised Learning
    Fuadi, Erland Hillman
    Ruslim, Aristo Renaldo
    Wardhana, Putu Wahyu Kusuma
    Yudistira, Novanto
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 611 - 615
  • [29] Self-Supervised Correlation Learning for Cross-Modal Retrieval
    Liu, Yaxin
    Wu, Jianlong
    Qu, Leigang
    Gan, Tian
    Yin, Jianhua
    Nie, Liqiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2851 - 2863
  • [30] Self-Supervised Motion Magnification by Backpropagating Through Optical Flow
    Pan, Zhaoying
    Geng, Daniel
    Owens, Andrew
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,