Cooperative Multi-Agent Deep Reinforcement Learning with Counterfactual Reward

被引:2
|
作者
Shao, Kun [1 ,2 ]
Zhu, Yuanheng [1 ]
Tang, Zhentao [1 ,2 ]
Zhao, Dongbin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
关键词
reinforcement learning; deep reinforcement learning; cooperative games; counterfactual reward; LEVEL; GAME; GO;
D O I
10.1109/ijcnn48605.2020.9207169
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In partially observable fully cooperative games, agents generally tend to maximize global rewards with joint actions, so it is difficult for each agent to deduce their own contribution. To address this credit assignment problem, we propose a multi-agent reinforcement learning algorithm with counterfactual reward mechanism, which is termed as CoRe algorithm. CoRe computes the global reward difference in condition that the agent does not take its actual action but takes other actions, while other agents fix their actual actions. This approach can determine each agent's contribution for the global reward. We evaluate CoRe in a simplified Pig Chase game with a decentralised Deep Q Network (DQN) framework. The proposed method helps agents learn end-to-end collaborative behaviors. Compared with other DQN variants with global reward, CoRe significantly improves learning efficiency and achieves better results. In addition, CoRe shows excellent performances in various size game environments.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Reward-Guided Individualised Communication for Deep Reinforcement Learning in Multi-Agent Systems
    Lin, Yi-Yu
    Zeng, Xiao-Jun
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 79 - 94
  • [42] Reward-Filtering-Based Credit Assignment for Multi-Agent Deep Reinforcement Learning
    Xu C.
    Yin N.
    Duan S.-H.
    He H.
    Wang R.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (11): : 2306 - 2320
  • [43] Multi-Agent Deep Q Network to Enhance the Reinforcement Learning for Delayed Reward System
    Kim, Keecheon
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [44] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [45] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [46] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [47] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [48] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [49] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [50] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29