Model-Free control performance improvement using virtual reference feedback tuning and reinforcement Q-learning

被引:49
|
作者
Radac, Mircea-Bogdan [1 ]
Precup, Radu-Emil [1 ,2 ]
Roman, Raul-Cristian [1 ]
机构
[1] Politehn Univ Timisoara, Dept Automat & Appl Informat, Timisoara, Romania
[2] Edith Cowan Univ, Sch Engn, Joondalup, WA, Australia
关键词
Aerodynamic system; data-driven control; model-free control; position control; reinforcement Q-learning; virtual reference feedback tuning; CONTROL DESIGN; EXPERIMENTAL VALIDATION; TRAJECTORY TRACKING; SEARCH ALGORITHM; VRFT APPROACH; SYSTEMS; OPTIMIZATION; TORQUE;
D O I
10.1080/00207721.2016.1236423
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes the combination of two model-free controller tuning techniques, namely linear virtual reference feedback tuning (VRFT) and nonlinear state-feedback Q-learning, referred to as a newmixed VRFT-Q learning approach. VRFT is first used to find stabilising feedback controller using input-output experimental data from the process in a model reference tracking setting. Reinforcement Q-learning is next applied in the same setting using input-state experimental data collected under perturbed VRFT to ensure good exploration. The Q-learning controller learned with a batch fitted Q iteration algorithm uses two neural networks, one for the Q-function estimator and one for the controller, respectively. The VRFT-Q learning approach is validated on position control of a two-degrees-of-motion open-loop stable multi input-multi output (MIMO) aerodynamic system (AS). Extensive simulations for the two independent control channels of theMIMO AS show that the Q-learning controllers clearly improve performance over the VRFT controllers.
引用
收藏
页码:1071 / 1083
页数:13
相关论文
共 50 条
  • [21] Improved model free adaptive control approach with virtual reference feedback tuning
    Jin, Shang-Tai
    Zhao, Ru-Li
    Hou, Zhong-Sheng
    Chi, Rong-Hu
    Kongzhi yu Juece/Control and Decision, 2015, 30 (12): : 2175 - 2180
  • [22] Model-Free Quantum Control with Reinforcement Learning
    Sivak, V. V.
    Eickbusch, A.
    Liu, H.
    Royer, B.
    Tsioutsios, I
    Devoret, M. H.
    PHYSICAL REVIEW X, 2022, 12 (01)
  • [23] Model-Free Optimal Tracking Design With Evolving Control Strategies via Q-Learning
    Wang, Ding
    Huang, Haiming
    Zhao, Mingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (07) : 3373 - 3377
  • [24] Model-Free Optimal Tracking Control via Critic-Only Q-Learning
    Luo, Biao
    Liu, Derong
    Huang, Tingwen
    Wang, Ding
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (10) : 2134 - 2144
  • [25] On the importance of hyperparameters tuning for model-free reinforcement learning algorithms
    Tejer, Mateusz
    Szezepanski, Rafal
    2024 12TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION, ICCMA, 2024, : 78 - 82
  • [26] Multi-input-multi-output system experimental validation of model-free control and virtual reference feedback tuning techniques
    Roman, Raul-Cristian
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (12): : 1395 - 1403
  • [27] Model-free Predictive Optimal Iterative Learning Control using Reinforcement Learning
    Zhang, Yueqing
    Chu, Bing
    Shu, Zhan
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3279 - 3284
  • [28] Model-Free Adaptive Control Approach Using Integral Reinforcement Learning
    Abouheaf, Mohammed
    Gueaieb, Wail
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTIC AND SENSORS ENVIRONMENTS (ROSE 2019), 2019, : 84 - 90
  • [29] Model-free LQ Control for Unmanned Helicopters using Reinforcement Learning
    Lee, Dong Jin
    Bang, Hyochoong
    2011 11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2011, : 117 - 120
  • [30] Model-free optimal chiller loading method based on Q-learning
    Qiu, Shunian
    Li, Zhenhai
    Li, Zhengwei
    Zhang, Xinfang
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2020, 26 (08) : 1100 - 1116