Model-Free control performance improvement using virtual reference feedback tuning and reinforcement Q-learning

被引:49
|
作者
Radac, Mircea-Bogdan [1 ]
Precup, Radu-Emil [1 ,2 ]
Roman, Raul-Cristian [1 ]
机构
[1] Politehn Univ Timisoara, Dept Automat & Appl Informat, Timisoara, Romania
[2] Edith Cowan Univ, Sch Engn, Joondalup, WA, Australia
关键词
Aerodynamic system; data-driven control; model-free control; position control; reinforcement Q-learning; virtual reference feedback tuning; CONTROL DESIGN; EXPERIMENTAL VALIDATION; TRAJECTORY TRACKING; SEARCH ALGORITHM; VRFT APPROACH; SYSTEMS; OPTIMIZATION; TORQUE;
D O I
10.1080/00207721.2016.1236423
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes the combination of two model-free controller tuning techniques, namely linear virtual reference feedback tuning (VRFT) and nonlinear state-feedback Q-learning, referred to as a newmixed VRFT-Q learning approach. VRFT is first used to find stabilising feedback controller using input-output experimental data from the process in a model reference tracking setting. Reinforcement Q-learning is next applied in the same setting using input-state experimental data collected under perturbed VRFT to ensure good exploration. The Q-learning controller learned with a batch fitted Q iteration algorithm uses two neural networks, one for the Q-function estimator and one for the controller, respectively. The VRFT-Q learning approach is validated on position control of a two-degrees-of-motion open-loop stable multi input-multi output (MIMO) aerodynamic system (AS). Extensive simulations for the two independent control channels of theMIMO AS show that the Q-learning controllers clearly improve performance over the VRFT controllers.
引用
收藏
页码:1071 / 1083
页数:13
相关论文
共 50 条
  • [1] Data-Driven Virtual Reference Feedback Tuning and Reinforcement Q-learning for Model-Free Position Control of an Aerodynamic System
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Roman, Raul-Cristian
    2016 24TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2016, : 1126 - 1132
  • [2] Improving Model Reference Control Performance Using Model-Free VRFT and Q-Learning
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2016, : 7 - 13
  • [3] Q-Learning Based Parameter Tuning for Model-free Adaptive Control of Nonlinear Systems
    Xu, Liuyong
    Hao, Shoulin
    Liu, Tao
    Zhu, Yong
    Wang, Haixia
    Zhang, Jiyan
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 2078 - 2083
  • [4] Model-free optimal tracking control for discrete-time system with delays using reinforcement Q-learning
    Liu, Yang
    Yu, Rui
    ELECTRONICS LETTERS, 2018, 54 (12) : 750 - 751
  • [5] Data-driven Model-Free Adaptive Control Tuned by Virtual Reference Feedback Tuning
    Roman, Raul-Cristian
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Petriu, Emil M.
    ACTA POLYTECHNICA HUNGARICA, 2016, 13 (01) : 83 - 96
  • [6] Gaussian Process Based Model-free Control with Q-Learning
    Hauser, Jan
    Pachner, Daniel
    Havlena, Vladimir
    IFAC PAPERSONLINE, 2019, 52 (11): : 236 - 243
  • [7] Model-free MIMO control tuning of a chiller process using reinforcement learning
    Rosdahl, Christian
    Bernhardsson, B. O.
    Eisenhower, Bryan
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2023, 29 (08) : 782 - 794
  • [8] Q-learning based model-free input-output feedback linearization control method ?
    Sun, Yipu
    Chen, Xin
    He, Wenpeng
    Zhang, Ziying
    Fukushima, Edwardo F.
    She, Jinhua
    IFAC PAPERSONLINE, 2023, 56 (02): : 9534 - 9539
  • [9] Optimal model-free adaptive control based on reinforcement Q-Learning for solar thermal collector fields
    Pataro, Igor M. L.
    Cunha, Rita
    Gil, Juan D.
    Guzman, Jose L.
    Berenguel, Manuel
    Lemos, Joao M.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [10] Virtual Reference Feedback Tuning of MIMO Data-Driven Model-Free Adaptive Control Algorithms
    Roman, Raul-Cristian
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Petriu, Emil M.
    TECHNOLOGICAL INNOVATION FOR CYBER-PHYSICAL SYSTEMS, 2016, 470 : 253 - 260