SPACE OBJECT CLASSIFICATION USING MODEL DRIVEN AND DATA DRIVEN METHODS

被引:0
|
作者
Linares, Richard [1 ]
Crassidis, John L. [2 ]
机构
[1] Univ Minnesota, Dept Aerosp Engn & Mech, Twin City Campus, Minneapolis, MN 55403 USA
[2] SUNY Buffalo, Dept Mech & Aerosp Engn, Space Situat Awareness, Amherst, NY 14260 USA
来源
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In recent years there has been an increase in the number of inactive and debris Space Objects (SOs). This work examines both data driven and model driven SO classification. The model driven approach investigated for this work is based on the Multiple Model Adaptive Estimation approach to extract SO characteristics from observations while estimating the probability the observations belonging to a given class of objects. The data driven methods are based on Principle Component Analysis and Convolutional Neural Network Classification approaches. The performance of these strategies for SO classification is demonstrated via simulated scenarios.
引用
收藏
页码:4213 / 4231
页数:19
相关论文
共 50 条
  • [31] Data-Driven Object Manipulation in Images
    Goldberg, Chen
    Chen, Tao
    Zhang, Fang-Lue
    Shamir, Ariel
    Hu, Shi-Min
    COMPUTER GRAPHICS FORUM, 2012, 31 (02) : 265 - 274
  • [32] GENE EXPRESSION DATA CLASSIFICATION AND PATTERN ANALYSIS USING DATA DRIVEN APPROACH
    Ramisa, Aiman Jabeen
    Hossain, Ananna
    Islam, S. K. Md Injamul
    Swadesh, Ponuel Mollah
    Islam, Md Toushif
    Rahman, Md Anisur
    Parvez, Mohammad Zavid
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2021, : 82 - 90
  • [33] Data-driven Feature Selection Methods for Text Classification: an Empirical Evaluation
    Fragoso, Rogerio C. P.
    Pinheiro, Roberto H. W.
    Cavalcanti, George D. C.
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2019, 25 (04) : 334 - 360
  • [34] Classification of Nonmetallic Inclusions in Steel by Data-Driven Machine Learning Methods
    Babu, Shashank Ramesh
    Musi, Robert
    Thiele, Kathrin
    Michelic, Susanne K.
    STEEL RESEARCH INTERNATIONAL, 2023, 94 (01)
  • [35] Data-Driven State Fragility Index Measurement Through Classification Methods
    Li, Xin
    Vidmer, Alexandre
    Liao, Hao
    Lu, Kezhong
    FRONTIERS IN PHYSICS, 2022, 10
  • [36] Mapping landslide susceptibility using data-driven methods
    Zezere, J. L.
    Pereira, S.
    Melo, R.
    Oliveira, S. C.
    Garcia, R. A. C.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 589 : 250 - 267
  • [37] Contraction scour estimation using data-driven methods
    Minh Duc Bui
    Kaveh, Keivan
    Penz, Petr
    Rutschmann, Peter
    JOURNAL OF APPLIED WATER ENGINEERING AND RESEARCH, 2015, 3 (02): : 143 - 156
  • [38] Early monitoring method of downhole accident driven by physics based model and data driven methods coupling
    Zhang, Zhi
    Sun, Baojiang
    Wang, Zhiyuan
    Pan, Shaowei
    Lou, Wenqiang
    Sun, Dalin
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 221
  • [39] A Data-driven Crowd Simulation Model based on Clustering and Classification
    Zhao, Mingbi
    Turner, Stephen John
    Cai, Wentong
    17TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS (DS-RT 2013), 2013, : 125 - 134
  • [40] The Anaerobic Digestion Process Control Using Data Driven Methods
    Condrachi, Larisa
    Ceanga, Emil
    Vilanova, Ramon
    Bichescu, Cezar
    Barbu, Marian
    2019 23RD INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2019, : 242 - 248