Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization

被引:39
|
作者
Cheng, Cai [1 ]
Cherian, Jacob [2 ]
Sial, Muhammad Safdar [3 ]
Zaman, Umer [4 ]
Niroumandi, Hosein [5 ]
机构
[1] Wuhan Univ, Econ & Management Sch, Wuhan 430072, Hubei, Peoples R China
[2] Abu Dhabi Univ, Coll Business, Abu Dhabi, U Arab Emirates
[3] COMSATS Univ Islamabad CUI, Dept Management Sci, Islamabad, Pakistan
[4] Woosong Univ, Endicott Coll Int Studies, Daejeon 34606, South Korea
[5] Islamic Azad Univ, Bonab Branch, Young Res & Elite Club, Bonab, Iran
关键词
Biomass-based solid oxide fuel cell; Economic analysis; Levelized total emission; Net present value; Payback period; WASTE HEAT-RECOVERY; MULTIOBJECTIVE OPTIMIZATION; STEAM GASIFICATION; SYSTEM; ENERGY; SOFC; EXERGY; ENGINE; SIMULATION; EFFICIENCY;
D O I
10.1016/j.energy.2021.120134
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the present work, a novel combined system based on the biomass-based solid oxide fuel cell and gas turbine system combined with the organic flash cycle is regarded for power generation aim. The main objective of this work is to investigate the feasibility of the proposed system from the economic and environmental viewpoints. The optimum performance of all optimization scenarios is found by applying the multi-objective particle swarm optimization algorithm and using the technique for order of preference by similarity to ideal solution (TOPSIS) method. Regarding the obtained results, for fuel cost of 6$ = GJ and electricity price of 0:10$=kWh, the total net present value at the end of plant lifetime is 9.8 x 10(5) $ and the payback period is 4:25 years, which means that the plant is feasible for construction from the economic perspective. Also, the simulation results indicate that the proposed hybrid system can yield to the energy and exergy efficiencies of 49:37% and 42:50%, respectively. Also, the net output electrical power and is obtained 425:39kW. Moreover, the final optimum solution selected by the decision-making method is obtained by h(II) = 47:12%, LTE = 23.24 t=MWh, and c(p,tot) = 5.50 $=GJ. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Diffused introduction of Organic Rankine Cycle for biomass-based power generation in an industrial district: a systems analysis
    Chinese, D
    Meneghetti, A
    Nardin, G
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2004, 28 (11) : 1003 - 1021
  • [32] Exergy Analysis of Biomass-Based Ethyl Levulinate Fuel for Whole Life Cycle
    Qu, Jingshen
    Lei, Tingzhou
    Sun, Tanglei
    Wang, Zhiwei
    Chen, Gaofeng
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2023, 17 (01) : 105 - 113
  • [33] Power generation enhancement in a biomass-based combined cycle using solar energy: Thermodynamic and environmental analysis
    Anvari, Simin
    Khalilarya, Shahram
    Zare, Vahid
    APPLIED THERMAL ENGINEERING, 2019, 153 : 128 - 141
  • [34] Techno-economic-environmental analysis and optimization of biomass-based SOFC poly-generation system
    Liang, Wenxing
    Yu, Zeting
    Bian, Feiyu
    Wu, Haonan
    Zhang, Kaifan
    Ji, Shaobo
    Cui, Bo
    ENERGY, 2023, 285
  • [35] Performance Analysis of Combined Cycle System Driven by Solid Oxide Fuel Cell
    Zhao, H. B.
    Jiang, T.
    Yang, Q.
    Yang, W.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING (EAME 2015), 2015, 13 : 71 - 74
  • [36] The performance analysis of combined cycle system driven by solid oxide fuel cell
    Zhao, Hong-Bin
    Yang, Qian
    Jiang, Ting
    Yang, Wei
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2014, 35 (05): : 848 - 853
  • [37] Life cycle assessment of a novel biomass-based aerogel material for building insulation
    Wang, Yixin
    Rasheed, Rizwan
    Jiang, Fatang
    Rizwan, Asfra
    Javed, Hajra
    Su, Yuehong
    Riffat, Saffa
    JOURNAL OF BUILDING ENGINEERING, 2021, 44
  • [38] Thermodynamic Investigation and Optimization of a Power Generation System Based Solid Oxide Fuel Cell Using Taguchi Approach
    Mojaver, P.
    Jafarmadar, S.
    Khalilarya, S.
    Chitsaz, A.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2019, 32 (07): : 1040 - 1048
  • [39] Novel integration of molten carbonate fuel cell stacks in a biomass-based Rankine cycle power plant with CO2 separation: A techno-economic and environmental study
    Zaman, Sk Arafat
    Ghosh, Sudip
    ENERGY, 2024, 307
  • [40] Performance of a syngas-fed solid oxide fuel cell power generation module
    Wang, Yanchao
    Yang, Xia
    Yao, Jinsong
    Li, Wenxiao
    Hao, Guozheng
    Li, Chufu
    CLEAN ENERGY, 2025, 9 (01): : 19 - 30