On some properties of the coupled Fitzhugh-Nagumo equations

被引:2
|
作者
Lavrova, S. F. [1 ]
Kudryashov, N. A. [1 ]
Sinelshchikov, D. I. [1 ]
机构
[1] Natl Res Nucl Univ MEPHI, Dept Appl Math, Kashirskoe Highway 31, Moscow 115409, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1088/1742-6596/1205/1/012035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the FitzHugh-Nagumo model describing two neurons electrically coupled via ion flow through gap juctions between them. This model is a simple example of a neural network, which has a vast amount of periodic behaviors. It is shown that system of equations describing this model does not pass the Painleve test. Analysis of stability of system's trivial stationary point is carried out. It is shown that this equilibrium point is not always stable. For some parameter regions where solution oscillates bifurcation diagrams are plotted and Lyapunov exponents are calculated. It is shown that analyzed non-stationary solutions are quasiperiodic.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Robustness of chimera states for coupled FitzHugh-Nagumo oscillators
    Omelchenko, Iryna
    Provata, Astero
    Hizanidis, Johanne
    Schoell, Eckehard
    Hoevel, Philipp
    PHYSICAL REVIEW E, 2015, 91 (02)
  • [42] SYNCHRONIZATION IN A RING OF UNIDIRECTIONALLY COUPLED FITZHUGH-NAGUMO NEURONS
    Bhattacharjee, Anindita
    Das, M. K.
    Ghosh, Subhendu
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2014, 7 (01)
  • [43] Funnel control for the monodomain equations with the FitzHugh-Nagumo model
    Berger, Thomas
    Breiten, Tobias
    Puche, Marc
    Reis, Timo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 : 164 - 214
  • [44] Exotic dynamic behavior of the forced FitzHugh-Nagumo equations
    Chou, MH
    Lin, YT
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (10) : 109 - 124
  • [45] SYNCHRONIZATION OF THE STOCHASTIC FITZHUGH-NAGUMO EQUATIONS TO PERIODIC FORCING
    LONGTIN, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1995, 17 (7-8): : 835 - 846
  • [46] SINGLE AND MULTIPLE PULSE WAVES FOR THE FITZHUGH-NAGUMO EQUATIONS
    HASTINGS, SP
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (02) : 247 - 260
  • [47] Quenching coupled FitzHugh-Nagumo oscillators by repulsive feedback
    Adomaitiene, Elena
    Asmontas, Steponas
    Bumeliene, Skaidra
    Tamasevicius, Arunas
    PHYSICA SCRIPTA, 2020, 95 (10)
  • [48] BOUNDARY-VALUE PROBLEMS FOR FITZHUGH-NAGUMO EQUATIONS
    SCHONBEK, ME
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 30 (01) : 119 - 147
  • [49] EXISTENCE OF HOMOCLINIC AND PERIODIC ORBITS FOR FITZHUGH-NAGUMO EQUATIONS
    HASTINGS, SP
    QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (105): : 123 - 134
  • [50] DYNAMIC TRANSITIONS OF THE FITZHUGH-NAGUMO EQUATIONS ON A FINITE DOMAIN
    Mao, Yiqiu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3935 - 3947