No-arbitrage equilibria with differential information: An existence proof

被引:3
|
作者
de Boisdeffre, Lionel
机构
[1] Univ Paris 01, INSEE, CREST, F-75013 Paris, France
[2] Univ Paris 01, CERMSEM, F-75013 Paris, France
关键词
general equilibrium; asymmetric information; arbitrage; inference; existence of equilibrium;
D O I
10.1007/s00199-006-0093-7
中图分类号
F [经济];
学科分类号
02 ;
摘要
On the example of a pure exchange financial economy with two periods incomplete nominal-asset markets and differential information of the adverse selection's type, Cornet-De Boisdeffre (J Math Econ 38:393-410, 2002) introduced refined concepts of no-arbitrage prices and equilibria, which extended to the asymmetric information setting the classical concepts of the symmetric information literature. We now assess existence issues and extend a standard property of symmetric information models. Namely, we prove that a no-arbitrage equilibrium always exists, as long as financial markets preclude arbitrage, under the same standard conditions, whether agents have symmetric or asymmetric information.
引用
收藏
页码:255 / 269
页数:15
相关论文
共 50 条
  • [21] NO-ARBITRAGE AND EQUIVALENT MARTINGALE MEASURES - AN ELEMENTARY PROOF OF THE HARRISON-PLISKA THEOREM
    KABANOV, YM
    KRAMKOV, DO
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1995, 39 (03) : 523 - 527
  • [22] A NOTE ON THE EFFECT OF NO-ARBITRAGE CONDITIONS
    LIEN, DHD
    JOURNAL OF FUTURES MARKETS, 1992, 12 (05) : 587 - 593
  • [23] A teachers' note on no-arbitrage criteria
    Kabanov, Y
    Stricker, C
    SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 149 - 152
  • [24] Remarks on the true no-arbitrage property
    Kabanov, Y
    Stricker, C
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 186 - 194
  • [25] Estimating discrete dividends by no-arbitrage
    Desmettre, Sascha
    Gruen, Sarah
    Seifried, Frank Thomas
    QUANTITATIVE FINANCE, 2017, 17 (02) : 261 - 274
  • [26] Harnack Inequality and No-Arbitrage Analysis
    Tang, Wanxiao
    Zhou, Fanchao
    Zhao, Peibiao
    SYMMETRY-BASEL, 2018, 10 (10):
  • [27] No-Arbitrage Principle in Conic Finance
    Vazifedan, Mehdi
    Zhu, Qiji Jim
    RISKS, 2020, 8 (02) : 1 - 34
  • [28] No-arbitrage bounds for financial scenarios
    Geyer, Alois
    Hanke, Michael
    Weissensteiner, Alex
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 236 (02) : 657 - 663
  • [29] Term Structure Forecasting: No-Arbitrage Restrictions versus Large Information Set
    Favero, Carlo A.
    Niu, Linlin
    Sala, Luca
    JOURNAL OF FORECASTING, 2012, 31 (02) : 124 - 156
  • [30] No-arbitrage conditions in discrete financial models
    Urusov, MA
    RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (05) : 1053 - 1055