Diffusion-Based Reference Broadcast Synchronization for Molecular Communication in Nanonetworks

被引:19
|
作者
Lin, Lin [1 ]
Li, Weiqiu [1 ]
Zheng, Renhua [1 ]
Liu, Fuqiang [1 ]
Yan, Hao [2 ,3 ]
机构
[1] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[3] Shanghai Engn Res Ctr Intelligent Diag & Treatmen, Shanghai 200240, Peoples R China
基金
上海市自然科学基金;
关键词
Molecular communication; nanonetworks; clock synchronization; OPTIMUM SIGNAL-DETECTION; BLIND SYNCHRONIZATION; CLOCK SYNCHRONIZATION;
D O I
10.1109/ACCESS.2019.2929873
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Molecular communication is a novel inter-disciplinary communication methodology at the nanoscale, which uses chemical or biological molecules as the information carriers. For many prospective molecular communication applications, the clock synchronization is a major issue. However, the existing solutions use the molecule releasing time for the clock synchronization schemes but ignore the molecule synthesizing time, which is not practical. To overcome this issue, in this paper, we propose a reference broadcast synchronization scheme. One nanomachine sends a broadcast beacon and the other two nanomachines records their receiving times. The receiving times are exchanged by that two nanomachines, then, the clocks between these two nanomachines can be synchronized. Owing to the fact that the information molecules propagate slowly with a large propagation delay, which also depends on the transmitter-receiver distance, so a delay estimation method is adopted in the synchronization scheme. The simulation results evaluate proposed synchronization scheme and show that the proposed scheme outperforms other clock synchronization schemes for molecular communication.
引用
收藏
页码:95527 / 95535
页数:9
相关论文
共 50 条
  • [31] Transposition Errors in Diffusion-Based Mobile Molecular Communication
    Haselmayr, Werner
    Aejaz, Syed Muhammad Haider
    Asyhari, A. Taufiq
    Springer, Andreas
    Guo, Weisi
    IEEE COMMUNICATIONS LETTERS, 2017, 21 (09) : 1973 - 1976
  • [32] Diversity in Diffusion-Based Molecular Communication Channel with Drift
    Malak, Derya
    Ramezani, Hamideh
    Kocaoglu, Murat
    Akan, Ozgur B.
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
  • [33] Molecular Communication With Anomalous Diffusion in Stochastic Nanonetworks
    Dung Phuong Trinh
    Jeong, Youngmin
    Shin, Hyundong
    Win, Moe Z.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (12) : 8378 - 8393
  • [34] Deterministic Model for Pulse Amplification in Diffusion-Based Molecular Communication
    Bazargani, Mehran H.
    Arifler, Dogu
    IEEE COMMUNICATIONS LETTERS, 2014, 18 (11) : 1891 - 1894
  • [35] Impacts of Unintended Nanomachine in Diffusion-Based Molecular Communication System
    Chouhan, Lokendra
    Sharma, Prabhat Kumar
    Upadhyay, Prabhat Kumar
    Garg, Parul
    Varshney, Neeraj
    IEEE TRANSACTIONS ON MOLECULAR BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS, 2020, 6 (03): : 210 - 219
  • [36] A Frequency Domain View on Diffusion-based Molecular Communication Channels
    Huang, Yu
    Ji, Fei
    Wen, Miaowen
    Tang, Yuankun
    Chen, Xuan
    Guo, Weisi
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [37] Leader-Follower Dynamics for Diffusion-based Molecular Communication
    Gomez, Jorge Torres
    Wicke, Wayan
    Toledo, Karel
    Schober, Robert
    Dressler, Falko
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [38] Maximum Likelihood Estimation of SNR for Diffusion-Based Molecular Communication
    Tiwari, Satish K.
    Upadhyay, Prabhat K.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2016, 5 (03) : 320 - 323
  • [39] Exploring the Physical Channel of Diffusion-based Molecular Communication by Simulation
    Llatser, Ignacio
    Pascual, Inaki
    Garralda, Nora
    Cabellos-Aparicio, Albert
    Pierobon, Massimiliano
    Alarcon, Eduard
    Sole-Pareta, Josep
    2011 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE (GLOBECOM 2011), 2011,
  • [40] Modelling the Reception Process in Diffusion-based Molecular Communication Channels
    ShahMohammadian, Hoda
    Messier, Geoffrey G.
    Magierowski, Sebastian
    2013 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (IEEE ICC), 2013, : 782 - 786