Insight into cathode surface to boost the performance of solid-state batteries

被引:71
|
作者
Deng, Sixu [1 ]
Sun, Qian [1 ]
Li, Minsi [1 ]
Adair, Keegan [1 ]
Yu, Chuang [1 ]
Li, Junjie [1 ]
Li, Weihan [1 ]
Fu, Jiamin [1 ]
Li, Xia [1 ]
Li, Ruying [1 ]
Hu, Yongfeng [2 ]
Chen, Ning [2 ]
Huang, Huan [4 ]
Zhang, Li [3 ]
Zhao, Shangqian [3 ]
Lu, Shigang [3 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] Canadian Light Source, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada
[3] China Automot Battery Res Inst Co Ltd, Fifth Floor,43,Min Bldg,North Sanhuan Middle Rd, Beijing 100088, Peoples R China
[4] Glabat Solid State Battery Inc, 700 Collip Circle, London, ON N6G 4X8, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Ni-rich NMC; Sulfide electrolyte; Cathode interface; Degradation mechanism; ELECTROCHEMICAL PERFORMANCE; EDGE XANES; EVOLUTION; STORAGE; SULFUR;
D O I
10.1016/j.ensm.2020.12.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cathode interface instability is a significant obstacle for the practical application of sulfide-based all-solid-state lithium-ion batteries (ASSLIBs). However, the origin of cathode interface degradation is lack of comprehensive understanding. In this paper, X-ray characterizations combined with electrochemical analysis are adopted to investigate the underlying degradation mechanism at cathode interface. The results indicate that residual lithium compounds on the surface of Ni-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) are the main reason that triggering the oxidation of sulfide solid-state electrolytes (SSEs), therefore inducing severe side-reactions at cathode interface and structural degradation of NMC811. The degradation of the cathode interface can be significantly suppressed when the cathode surface is cleaned. As a result, the surface cleaned NMC811 without coating demonstrates significantly improved electrochemical performance in both Li5.5PS4.5Cl1.5 (LPSCl) and Li10GeP2S12 (LGPS) based ASSLIBs, proving the universal application of this strategy.
引用
收藏
页码:661 / 668
页数:8
相关论文
共 50 条
  • [41] HISTORY OF SOLID-STATE BATTERIES
    OWENS, BB
    MUNSHI, MZA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (03) : C108 - C108
  • [42] SOLID-STATE STORAGE BATTERIES
    LIANG, CC
    JOSHI, AV
    HAMILTON, NE
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1978, 8 (05) : 445 - 454
  • [43] Printed Solid-State Batteries
    Zhou, Shiqiang
    Li, Mengrui
    Wang, Peike
    Cheng, Lukuan
    Chen, Lina
    Huang, Yan
    Yu, Suzhu
    Mo, Funian
    Wei, Jun
    ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
  • [44] Solid-State Sodium Batteries
    Zhao, Chenglong
    Liu, Lilu
    Qi, Xingguo
    Lu, Yaxiang
    Wu, Feixiang
    Zhao, Junmei
    Yu, Yan
    Hu, Yong-Sheng
    Chen, Liquan
    ADVANCED ENERGY MATERIALS, 2018, 8 (17)
  • [45] Frontiers of solid-state batteries
    Jagjit Nanda
    Chongmin Wang
    Ping Liu
    MRS Bulletin, 2018, 43 : 740 - 745
  • [46] Printed Solid-State Batteries
    Shiqiang Zhou
    Mengrui Li
    Peike Wang
    Lukuan Cheng
    Lina Chen
    Yan Huang
    Suzhu Yu
    Funian Mo
    Jun Wei
    Electrochemical Energy Reviews, 2023, 6
  • [47] A Roadmap for Solid-State Batteries
    Schmaltz, Thomas
    Hartmann, Felix
    Wicke, Tim
    Weymann, Lukas
    Neef, Christoph
    Janek, Juergen
    ADVANCED ENERGY MATERIALS, 2023, 13 (43)
  • [48] Recycling of solid-state batteries
    Marco Ahuis
    Stefan Doose
    Daniel Vogt
    Peter Michalowski
    Sabrina Zellmer
    Arno Kwade
    Nature Energy, 2024, 9 : 373 - 385
  • [49] ALL SOLID-STATE BATTERIES
    HOOPER, A
    TOFIELD, BC
    JOURNAL OF POWER SOURCES, 1984, 11 (1-2) : 33 - 41
  • [50] Frontiers of solid-state batteries
    Nanda, Jagjit
    Wang, Chongmin
    Liu, Ping
    MRS BULLETIN, 2018, 43 (10) : 740 - 745