CUSUM Control Charts for the Monitoring of Zero-inflated Binomial Processes

被引:19
|
作者
Rakitzis, Athanasios C. [1 ,2 ]
Maravelakis, Petros E. [3 ]
Castagliola, Philippe [1 ,2 ]
机构
[1] Univ Nantes, LUNAM Univ, Nantes, France
[2] IRCCyN UMR CNRS 6597, Nantes, France
[3] Univ Piraeus, Dept Business Adm, 80 Karaoli & Dimitriou St, Piraeus 18534, Greece
关键词
average run length (ARL); health-related processes; high-yield processes; Markov chain; standard deviation of run length (SDRL);
D O I
10.1002/qre.1764
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Zero-inflated probability models are used to model count data that have an excessive number of zeros. These models are mostly useful in modeling high-yield or health-related processes. The zero-inflated binomial distribution is an extension of the ordinary binomial distribution that takes into account the excess of zeros. In this paper, one-sided cumulative sum (CUSUM)-type control charts are proposed for monitoring increases or decreases in the parameter p of a zero-inflated binomial process. The results of an extensive numerical study concerning the statistical design of the proposed schemes as well as their practical implementation are provided. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:465 / 483
页数:19
相关论文
共 50 条
  • [21] A constrained marginal zero-inflated binomial regression model
    Ali, Essoham
    Diop, Aliou
    Dupuy, Jean-Francois
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (18) : 6396 - 6422
  • [22] Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial
    Kyung Hyun Lee
    Claudia Pedroza
    Elenir B. C. Avritscher
    Ricardo A. Mosquera
    Jon E. Tyson
    Trials, 24
  • [23] Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial
    Lee, Kyung Hyun
    Pedroza, Claudia
    Avritscher, Elenir B. C.
    Mosquera, Ricardo A.
    Tyson, Jon E.
    TRIALS, 2023, 24 (01)
  • [24] Zero-inflated non-central negative binomial distribution
    Tian, Wei-zhong
    Liu, Ting-ting
    Yang, Yao-ting
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2022, 37 (02) : 187 - 198
  • [25] A double generally weighted moving average control chart for monitoring zero-inflated Poisson processes
    Alevizakos, Vasileios
    Chatterjee, Kashinath
    Koukouvinos, Christos
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025, 54 (06) : 1773 - 1804
  • [26] Bivariate zero-inflated negative binomial regression model with applications
    Faroughi, Pouya
    Ismail, Noriszura
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (03) : 457 - 477
  • [27] Robust inference in the multilevel zero-inflated negative binomial model
    Zandkarimi, Eghbal
    Moghimbeigi, Abbas
    Mahjub, Hossein
    Majdzadeh, Reza
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (02) : 287 - 305
  • [28] Analyzing ingrowth using zero-inflated negative binomial models
    Lappi, Juha
    Pukkala, Timo
    SILVA FENNICA, 2020, 54 (04) : 1 - 19
  • [29] Zero-inflated non-central negative binomial distribution
    TIAN Weizhong
    LIU Tingting
    YANG Yaoting
    AppliedMathematics:AJournalofChineseUniversities, 2022, 37 (02) : 187 - 198
  • [30] Zero-inflated non-central negative binomial distribution
    Wei-zhong Tian
    Ting-ting Liu
    Yao-ting Yang
    Applied Mathematics-A Journal of Chinese Universities, 2022, 37 : 187 - 198