A SEMIPARAMETRIC MODEL FOR CLUSTER DATA

被引:28
|
作者
Zhang, Wenyang [1 ]
Fan, Jianqing [2 ]
Sun, Yan [3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[3] Shanghai Univ Finance & Econ, Sch Econ, Shanghai, Peoples R China
来源
ANNALS OF STATISTICS | 2009年 / 37卷 / 5A期
关键词
Varying-coefficient models; local linear modeling; cluster level variable; cluster effect; VARYING-COEFFICIENT MODELS; LONGITUDINAL DATA; NONPARAMETRIC REGRESSION; CONFIDENCE BANDS; INFERENCE; SELECTION; SPLINE;
D O I
10.1214/08-AOS662
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the analysis of cluster data, the regression coefficients are frequently assumed to be the same across all clusters. This hampers the ability to Study the varying impacts of factors on each cluster. In this paper, a semiparametric model is introduced to account for varying impacts of factors over clusters by using cluster-level covariates. It achieves the parsimony of parametrization and allows the explorations of nonlinear interactions. The random effect ill the semiparametric model also accounts for within-cluster correlation. Local. linear-based estimation procedure is proposed for estimating functional coefficients, residual variance and within-cluster correlation matrix. The asymptotic properties of the proposed estimators are established, and the method for constructing Simultaneous confidence bands are proposed and studied. In addition, relevant hypothesis testing problems ire addressed. Simulation studies are carried out to demonstrate the methodological power of the proposed methods in the finite sample. The proposed model and methods are used to analyse the second birth interval in Bangladesh, leading to some interesting findings.
引用
收藏
页码:2377 / 2408
页数:32
相关论文
共 50 条
  • [41] A semiparametric regression cure model with current status data
    Lam, KF
    Xue, HQ
    BIOMETRIKA, 2005, 92 (03) : 573 - 586
  • [42] Semiparametric probit model for informative current status data
    Du, Mingyue
    Hu, Tao
    Sun, Jianguo
    STATISTICS IN MEDICINE, 2019, 38 (12) : 2219 - 2227
  • [43] A Semiparametric Threshold Model for Censored Longitudinal Data Analysis
    Li, Jialiang
    Zhang, Wenyang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 685 - 696
  • [44] A semiparametric additive rates model for recurrent event data
    Schaubel, Douglas E.
    Zeng, Donglin
    Cai, Jianwen
    LIFETIME DATA ANALYSIS, 2006, 12 (04) : 389 - 406
  • [45] A flexible semiparametric transformation model for recurrent event data
    Lin Dong
    Liuquan Sun
    Lifetime Data Analysis, 2015, 21 : 20 - 41
  • [46] A Bayesian semiparametric model for bivariate sparse longitudinal data
    Das, Kiranmoy
    Li, Runze
    Sengupta, Subhajit
    Wu, Rongling
    STATISTICS IN MEDICINE, 2013, 32 (22) : 3899 - 3910
  • [47] Semiparametric marginal methods for clustered data adjusting for informative cluster size with nonignorable zeros
    Shen, Biyi
    Chen, Chixiang
    Chinchilli, Vernon M.
    Ghahramani, Nasrollah
    Zhang, Lijun
    Wang, Ming
    BIOMETRICAL JOURNAL, 2022, 64 (05) : 898 - 911
  • [48] A Semiparametric Regression Cure Model for Interval-Censored Data
    Liu, Hao
    Shen, Yu
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) : 1168 - 1178
  • [49] Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
    Li, Rui
    Li, Tao
    Su, Huacheng
    You, Jinhong
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025,
  • [50] A semiparametric spatio-temporal model for solar irradiance data
    Patrick, Joshua D.
    Harvill, Jane L.
    Hansen, Clifford W.
    RENEWABLE ENERGY, 2016, 87 : 15 - 30