Adaptive model-based control of non-linear plants using neural networks and fuzzy logic

被引:0
|
作者
Melin, P [1 ]
Valerio, F [1 ]
Ramirez, M [1 ]
Sanchez, A [1 ]
机构
[1] Tijuana Inst Technol, Dept Comp Sci, Chula Vista, CA 91909 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe in this paper adaptive model-based control of the inverted pendulum using a new hybrid approach combining neural networks and fuzzy logic. Intelligent control of complex plants is a difficult problem because the dynamics of these systems is highly non-linear. We describe an intelligent system for controlling the inverted pendulum to illustrate our new hybrid approach for adaptive control. We use the mathematical model of the inverted pendulum as s reference model in the control, and a set of fuzzy rules for representing the expert knowledge in controlling the non-linear dynamical system. We also consider a neuro-fuzzy approach to optimize the parameters of the fuzzy system for control.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [21] Neural adaptive control of non-linear plants via a multiple inverse model approach
    Grupo de Redes Neuronales, Depto. Matemat. Apl. Tecno., Univ. Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
    不详
    不详
    Int J Adapt Control Signal Process, 4 (219-239):
  • [22] Neural adaptive control of non-linear plants via a multiple inverse model approach
    Zufiria, PJ
    Fraile-Ardanuy, J
    Riaza, R
    Alonso, JI
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1999, 13 (04) : 219 - 239
  • [23] Fuzzy logic model reference adaptive control of a vehicle active suspension with non-linear dynamics
    Cheung, JYM
    MULTI-BODY DYNAMICS: MONITORING AND SIMULATION TECHNIQUES, 1997, : 327 - 336
  • [24] A new method for adaptive model-based neuro-fuzzy-fractal control of non-linear dynamical systems
    Melin, P
    Castillo, O
    SECOND INTERNATIONAL CONFERENCE ON NONLINEAR PROBLEMS IN AVIATION & AEROSPACE VOL 1 AND 2, 1999, : 499 - 506
  • [25] HYPERSTABLE ADAPTIVE MODEL FOLLOWING CONTROL OF NON-LINEAR PLANTS
    BALESTRINO, A
    DEMARIA, G
    SCIAVICCO, L
    SYSTEMS & CONTROL LETTERS, 1982, 1 (04) : 232 - 236
  • [26] Adaptive Type-2 Fuzzy Logic Control of Non-Linear Processes
    Cosenza, Bartolomeo
    Galluzzo, Mose
    ICHEAP-10: 10TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-3, 2011, 24 : 235 - 240
  • [27] Identification of restoring forces in non-linear vibration systems using fuzzy adaptive neural networks
    Liang, YC
    Feng, DP
    Cooper, JE
    JOURNAL OF SOUND AND VIBRATION, 2001, 242 (01) : 47 - 58
  • [28] Adaptive output feedback control of a class of non-linear systems using neural networks
    Hovakimyan, N
    Nardi, F
    Calise, AJ
    Lee, H
    INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (12) : 1161 - 1169
  • [29] Non-linear fuzzy logic control of a PWM inverter with a non-linear load
    Purton, KD
    Lisner, RP
    2000 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY, VOLS I-III, PROCEEDINGS, 2000, : 229 - 234
  • [30] MODEL-BASED NON-LINEAR ESTIMATION FOR ADAPTIVE IMAGE RESTORATION
    Wu, Xiaolin
    Zhang, Xiangjun
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1185 - 1188