Phaseless Gauss-Newton Inversion for Microwave Imaging

被引:6
|
作者
Narendra, Chaitanya [1 ]
Mojabi, Puyan [1 ]
机构
[1] Univ Manitoba, Dept Elect & Comp Engn, Winnipeg, MB R3T 5V6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Gauss-Newton inversion (GNI); inverse scattering; microwave imaging (MWI); phaseless (magnitude-only) inversion; regularization; SOURCE RECONSTRUCTION METHOD; TOTAL FIELD; TOMOGRAPHIC RECONSTRUCTION; SCATTERING DATABASE; ALGORITHMS; RETRIEVAL;
D O I
10.1109/TAP.2020.3026427
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A phaseless Gauss-Newton inversion (PGNI) algorithm is developed for microwave imaging (MWI) applications. In contrast to full-data MWI inversion that uses complex (magnitude and phase) scattered field data, the proposed PGNI algorithm inverts phaseless (magnitude-only) total field data. This PGNI algorithm is augmented with three different forms of regularization, originally developed for complex GNI. First, we use the standard weighted L-2 norm total variation multiplicative regularizer, which is appropriate when there is no prior information about the object being imaged. We then use two other forms of regularization operators to incorporate prior information about the object being imaged into the PGNI algorithm. The first one, herein referred to as SL-PGNI, incorporates prior information about the expected relative complex permittivity values of the object of interest. The other, referred to as spatial prior PGNI (SP-PGNI), incorporates SPs (structural information) about the objects being imaged. The use of prior information aims to compensate for the lack of total field phase data. The PGNI, SL-PGNI, and SP-PGNI inversion algorithms are then tested against synthetic and experimental phaseless total field data.
引用
收藏
页码:443 / 456
页数:14
相关论文
共 50 条
  • [31] An Iterative Algorithm for Microwave Tomography Using Modified Gauss-Newton Method
    Kundu, A. K.
    Bandyopadhyay, B.
    Sanyal, S.
    4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2, 2008, 21 (1-2): : 511 - +
  • [32] Three-dimensional Microwave Imaging of Realistic Breast Phantoms via an Inexact Gauss-Newton Algorithm
    Kosmas, Panagiotis
    Shea, Jacob D.
    Van Veen, Barry D.
    Hagness, Susan C.
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 3030 - +
  • [33] Gauss-Newton method using implicit iterative increments for the inversion of gravity anomalies
    Li, Huiyuan
    Xu, Mengjie
    Peng, Ruiren
    Chen, Jiming
    Journal of Shanghai University, 1999, 5 (01): : 29 - 32
  • [34] Parallel Full-waveform Inversion in the Frequency Domain by the Gauss-Newton Method
    Zhang, Wensheng
    Zhuang, Yuan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [35] INVERSION OF ACOUSTIC DATA USING A COMBINATION OF GENETIC ALGORITHMS AND THE GAUSS-NEWTON APPROACH
    GERSTOFT, P
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1995, 97 (04): : 2181 - 2190
  • [36] Performance enhancement of Gauss-Newton trust-region solver for distributed Gauss-Newton optimization method
    Guohua Gao
    Hao Jiang
    Jeroen C. Vink
    Paul P. H. van Hagen
    Terence J. Wells
    Computational Geosciences, 2020, 24 : 837 - 852
  • [37] Performance enhancement of Gauss-Newton trust-region solver for distributed Gauss-Newton optimization method
    Gao, Guohua
    Jiang, Hao
    Vink, Jeroen C.
    van Hagen, Paul P. H.
    Wells, Terence J.
    COMPUTATIONAL GEOSCIENCES, 2020, 24 (02) : 837 - 852
  • [38] Gauss-Newton approximation to Bayesian learning
    Foresee, FD
    Hagan, MT
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1930 - 1935
  • [39] Convergence analysis of inexact Gauss-Newton
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 1997, 14 (04): : 1 - 7
  • [40] On the Local Convergence of the Gauss-Newton Method
    Argyros, Ioannis K.
    Hilout, Said
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2009, 41 : 23 - 33