Exploring mutual information-based sentimental analysis with kernel-based extreme learning machine for stock prediction

被引:49
|
作者
Wang, Feng [1 ]
Zhang, Yongquan [1 ]
Rao, Qi [2 ]
Li, Kangshun [3 ]
Zhang, Hao [4 ]
机构
[1] Wuhan Univ, State Key Lab Software Engn, Wuhan, Peoples R China
[2] Peking Univ, Inst Computat Linguist, Beijing, Peoples R China
[3] South China Agr Univ, Coll Math & Informat, Guangzhou, Guangdong, Peoples R China
[4] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
关键词
Stock prediction; Sentimental analysis; Mutual information; Extreme learning machine; Optimization; NEURAL-NETWORK; WEIGHTS;
D O I
10.1007/s00500-015-2003-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stock price volatility prediction is regarded as one of the most attractive and meaningful research issues in financial market. Some existing researches have pointed out that both the prediction accuracy and the prediction speed are the most important factors in the process of stock prediction. In this paper, we focus on the problem of how to design a methodology which can improve prediction accuracy as well as speed up prediction process, and propose a new prediction model which employs mutual information- based sentimental analysis methodology with extreme learning machine to enhance the prediction performance. The two major contributions of our work are (1) as the words in the news documents are not absolutely negative or positive, and the lengths of the financial news documents are various; here, we propose a new sentimental analysis methodology based on mutual information to improve the efficiency of feature selection, which is different from the traditional sentimental analysis algorithm, and a new weighting scheme is also used in the feature weighting process; (2) since ELM is a fast learning model and has been successfully applied in many research fields, we propose a prediction model which combined mutual information-based sentimental analysis with kernel-based ELM named as MISA-K-ELM. This model has the benefits of both statistical sentimental analysis and ELM, which can well balance the requirements of both prediction accuracy and prediction speed. We take experiments on HKEx 2001 stock market datasets to validate the performance of the proposed MISA-K-ELM. The market historical price and the market news are implemented in our MISA-K-ELM. To test the efficiency of MISA, we first compare the prediction accuracy of ELM model using MISA with ELM model using traditional sentimental analysis. Then, we compare our proposed MISA-K-ELM with existing state-of-the-art learning algorithms, such as Back-Propagation Neural Network (BP-NN), and Support Vector Machine (SVM). Our experimental results show that (1) MISA model can help get higher prediction accuracy than traditional sentimental analysis models; (2) MISA-K-ELM and MISA-SVM have a higher prediction accuracy than MISA-BP-NN and MISA-B-ELM; (3) both MISA-K-ELM and MISA-B-ELM can achieve faster prediction speed than MISA-SVM and MISA-BP-NN in most cases; (4) in most cases, MISA-K-ELM has higher prediction accuracy than the other three methodologies.
引用
收藏
页码:3193 / 3205
页数:13
相关论文
共 50 条
  • [41] PCA and Kernel-based Extreme Learning Machine for Side-Scan Sonar Image Classification
    Zhu, Mingcui
    Song, Yan
    Guo, Jia
    Feng, Chen
    Li, Guangliang
    Yan, Tianhong
    He, Bo
    2017 IEEE UNDERWATER TECHNOLOGY (UT), 2017,
  • [42] Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach
    Li, Xin
    Chen, Hsinchun
    DECISION SUPPORT SYSTEMS, 2013, 54 (02) : 880 - 890
  • [43] Side-Scan Sonar Image Segmentation using Kernel-based Extreme Learning Machine
    Ding, Guoqing
    Song, Yan
    Guo, Jia
    Feng, Chen
    Li, Guangliang
    Yan, Tianhong
    He, Bo
    2017 IEEE UNDERWATER TECHNOLOGY (UT), 2017,
  • [44] Mutual Information-Based Generalisation Gap Analysis Using Deep Learning Model
    Bhuyan, Hemanta Kumar
    Unhelkar, Bhuvan
    Shankar, S. Siva
    Chakrabarti, Prasun
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2025, 24 (01)
  • [45] A Mutual Information-based Framework for the Analysis of Information Retrieval Systems
    Golbus, Peter B.
    Aslam, Javed A.
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 683 - 692
  • [46] Software defect prediction based on kernel PCA and weighted extreme learning machine
    Xu, Zhou
    Liu, Jin
    Luo, Xiapu
    Yang, Zijiang
    Zhang, Yifeng
    Yuan, Peipei
    Tang, Yutian
    Zhang, Tao
    INFORMATION AND SOFTWARE TECHNOLOGY, 2019, 106 : 182 - 200
  • [47] Multivariate Time Series Prediction based on Multiple Kernel Extreme Learning Machine
    Wang, Xinying
    Han, Min
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 198 - 201
  • [48] Exploring multiple communities with kernel-based link analysis
    Ito, Takahiko
    Shimbo, Masashi
    Mochihashi, Daichi
    Matsumoto, Yuji
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2006, PROCEEDINGS, 2006, 4213 : 235 - 246
  • [49] Enhancing Stock Price Prediction with a Hybrid Approach Based Extreme Learning Machine
    Wang, Feng
    Zhang, Yongquan
    Xiao, Hang
    Kuang, Li
    Lai, Yi
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 1568 - 1575
  • [50] Stock price prediction based on Weighted Meta-Extreme Learning Machine
    Song, Yanbing
    Zang, Shaofei
    Ma, Jianwei
    Li, Huimin
    Lv, Jinfeng
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1028 - 1033