Universal Scaling in the Temperature-Dependent Viscous Dynamics of Metallic Glasses

被引:2
|
作者
Zhang, Meng [1 ,3 ]
Chen, Yan [1 ,2 ]
Dai, Lan-Hong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
[3] Jinan Univ, Inst Adv Wear & Corros Resistant & Funct Mat, Guangzhou 510632, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2021年 / 125卷 / 13期
关键词
D O I
10.1021/acs.jpcb.1c00034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The essential query about glass formation is how to understand the sheer temperature dependence of viscous dynamics of glass-forming liquids near the liquid-to-glass-transition temperature T-g. In this work, we report a universal scaling in the temperature-dependent viscous dynamics of metallic glasses (MGs) in the form of the Williams-Landel-Ferry equation on the basis of compiled data on the temperature-dependent viscosity and structural relaxation times of 89 MGs ever-reported in the past decades. Implications of this universal scaling are illustrated in the framework of the Adam-Gibbs relation, suggesting a universal vitrification mechanism in MGs mediated by configurational entropy wherein configurational entropy vanishes universally for all supercooled metallic liquids after a further decrease in temperature of similar to 170.7 K (whereas with a relatively large error of +/- 150 K) below T-g. This result corroborates the thermodynamic origin of glass formation and suggests that MGs are an ideal research subject for understanding in depth the nature of glass transition for their relatively simple molecular structures.
引用
收藏
页码:3419 / 3425
页数:7
相关论文
共 50 条
  • [21] Temperature-dependent lattice dynamics in iridium
    Moseley, Duncan H.
    Thebaud, Simon J.
    Lindsay, Lucas R.
    Cheng, Yongqiang
    Abernathy, Douglas L.
    Manley, Michael E.
    Hermann, Raphael P.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (11):
  • [22] Topological engineering of glasses using temperature-dependent constraints
    Smedskjaer, Morten M.
    Hermansen, Christian
    Youngman, Randall E.
    MRS BULLETIN, 2017, 42 (01) : 29 - 33
  • [23] Topological engineering of glasses using temperature-dependent constraints
    Morten M. Smedskjaer
    Christian Hermansen
    Randall E. Youngman
    MRS Bulletin, 2017, 42 : 29 - 33
  • [24] NOTE ON THE TEMPERATURE-DEPENDENT TRANSMITTANCE OF RESIDUAL FILMS ON GLASSES
    OHTSUKA, M
    BEDFORD, RE
    MA, CK
    METROLOGIA, 1979, 15 (03) : 165 - 166
  • [25] The question of temperature-dependent intrinsic dipoles in chalcogenide glasses
    Fritzsche, H
    PHILOSOPHICAL MAGAZINE LETTERS, 1999, 79 (07) : 449 - 451
  • [26] NORMALIZED CONDUCTANCE SCALING FUNCTIONS FOR TEMPERATURE-DEPENDENT SYSTEMS
    WHITE, H
    MCLACHLAN, DS
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (27): : 5415 - 5422
  • [27] Universal temperature-dependent normalized optoacoustic response of blood
    Petrova, Elena V.
    Liopo, Anton
    Oraevsky, Alexander A.
    Ermilov, Sergey A.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2015, 2015, 9323
  • [28] MOLECULAR-DYNAMICS STUDIES OF TEMPERATURE-DEPENDENT STRUCTURAL TRANSITIONS ON FCC(111) METALLIC SURFACES
    RAVELO, R
    ELBATANOUNY, M
    PHYSICAL REVIEW B, 1993, 47 (19): : 12771 - 12784
  • [29] Extension of a viscous thread with temperature-dependent viscosity and surface tension
    He, Dongdong
    Wylie, Jonathan J.
    Huang, Huaxiong
    Miura, Robert M.
    JOURNAL OF FLUID MECHANICS, 2016, 800 : 720 - 752