ARITHMETIC OF DOUBLE TORUS QUOTIENTS AND THE DISTRIBUTION OF PERIODIC TORUS ORBITS

被引:0
|
作者
Khayutin, Ilya [1 ,2 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Jerusalem, Israel
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
基金
欧洲研究理事会;
关键词
INVARIANT; ESCAPE; MASS; ENTROPY; FORMS;
D O I
10.1215/00127094-2019-0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe new arithmetic invariants for pairs of torus orbits on groups isogenous to an inner form of PGL(n) over a number field. These invariants are constructed by studying the double quotient of a linear algebraic group by a maximal torus. Using the new invariants we significantly strengthen results toward the equidistribution of packets of periodic torus orbits on higher rank S-arithmetic quotients. Packets of periodic torus orbits are natural collections of torus orbits coming from a single adelic torus and are closely related to class groups of number fields. The distribution of these orbits is akin to the distribution of integral points on homogeneous algebraic varieties with a torus stabilizer. The proof combines geometric invariant theory, Galois actions, local arithmetic estimates, and homogeneous dynamics.
引用
收藏
页码:2365 / 2432
页数:68
相关论文
共 50 条
  • [31] About periodic and quasi-periodic orbits of a new type for twist maps of the torus
    Addas-Zanata, S
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2002, 74 (01): : 25 - 31
  • [32] Free subgroups with torsion quotients and profinite subgroups with torus quotients
    Lewis, Wayne
    Loth, Peter
    Mader, Adolf
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2020, 144 : 177 - 195
  • [33] Bifurcations of invariant torus and knotted periodic orbits for the generalized Hopf–Langford system
    Yanggeng Fu
    Jibin Li
    Nonlinear Dynamics, 2021, 106 : 2097 - 2105
  • [34] QUOTIENTS OF TORUS ENDOMORPHISMS HAVE PARABOLIC ORBIFOLDS
    Llavayol, Sofia
    Xavier, Juliana
    CONFORMAL GEOMETRY AND DYNAMICS, 2024, 28 : 88 - 96
  • [35] Projective normality of torus quotients of flag varieties
    Nayek, Arpita
    Pattanayak, S. K.
    Jindal, Shivang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (10)
  • [36] Constructing symplectomorphisms between symplectic torus quotients
    Hans-Christian Herbig
    Ethan Lawler
    Christopher Seaton
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 581 - 604
  • [37] Constructing symplectomorphisms between symplectic torus quotients
    Herbig, Hans-Christian
    Lawler, Ethan
    Seaton, Christopher
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (04): : 581 - 604
  • [38] Smooth torus quotients of Richardson varieties in the Grassmannian
    Bakshi, Sarjick
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (05)
  • [39] Smooth torus quotients of Schubert varieties in the Grassmannian
    Bakshi, Sarjick
    Kannan, S. Senthamarai
    Subrahmanyam, K. Venkata
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [40] ORBITS OF TORUS GROUPS OPERATING ON MANIFOLDS
    FLOYD, EE
    ANNALS OF MATHEMATICS, 1957, 65 (03) : 505 - 512