ARITHMETIC OF DOUBLE TORUS QUOTIENTS AND THE DISTRIBUTION OF PERIODIC TORUS ORBITS

被引:0
|
作者
Khayutin, Ilya [1 ,2 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Jerusalem, Israel
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
基金
欧洲研究理事会;
关键词
INVARIANT; ESCAPE; MASS; ENTROPY; FORMS;
D O I
10.1215/00127094-2019-0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe new arithmetic invariants for pairs of torus orbits on groups isogenous to an inner form of PGL(n) over a number field. These invariants are constructed by studying the double quotient of a linear algebraic group by a maximal torus. Using the new invariants we significantly strengthen results toward the equidistribution of packets of periodic torus orbits on higher rank S-arithmetic quotients. Packets of periodic torus orbits are natural collections of torus orbits coming from a single adelic torus and are closely related to class groups of number fields. The distribution of these orbits is akin to the distribution of integral points on homogeneous algebraic varieties with a torus stabilizer. The proof combines geometric invariant theory, Galois actions, local arithmetic estimates, and homogeneous dynamics.
引用
收藏
页码:2365 / 2432
页数:68
相关论文
共 50 条
  • [1] DISTRIBUTION OF PERIODIC TORUS ORBITS ON HOMOGENEOUS SPACES
    Einsiedler, Manfred
    Lindenstrauss, Elon
    Michel, Philippe
    Venkatesh, Akshay
    DUKE MATHEMATICAL JOURNAL, 2009, 148 (01) : 119 - 174
  • [2] Monotone periodic orbits for torus homeomorphisms
    Parwani, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1677 - 1683
  • [3] Distribution of periodic torus orbits and Duke's theorem for cubic fields
    Einsiedler, Manfred
    Lindenstrauss, Elon
    Michel, Philippe
    Venkatesh, Akshay
    ANNALS OF MATHEMATICS, 2011, 173 (02) : 815 - 885
  • [4] Degenerate periodic orbits and homoclinic torus bifurcation
    Bridges, TJ
    Donaldson, NM
    PHYSICAL REVIEW LETTERS, 2005, 95 (10)
  • [5] BASINS OF PERIODIC-ORBITS FOR ELLIPTIC MAPS OF THE TORUS
    AMADASI, L
    CASARTELLI, M
    JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (1-2) : 363 - 372
  • [6] On Chow Quotients of Torus Actions
    Baeker, Hendrik
    Hausen, Juergen
    Keicher, Simon
    MICHIGAN MATHEMATICAL JOURNAL, 2015, 64 (03) : 451 - 473
  • [7] PONTRYAGIN RING OF TORUS QUOTIENTS
    BAUES, HJ
    MATHEMATISCHE ZEITSCHRIFT, 1973, 134 (03) : 221 - 228
  • [8] Torus quotients of homogeneous spaces
    S Senthamarai Kannan
    Proceedings Mathematical Sciences, 1998, 108 : 1 - 12
  • [9] Torus quotients of homogeneous spaces
    Kannan, SS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1998, 108 (01): : 1 - 12
  • [10] On the Torus quotients of Schubert varieties
    Bonala, Narasimha Chary
    Pattanayak, Santosha Kumar
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (03)