Multicharged vortex induced in fractional Schrodinger equation with competing nonlocal nonlinearities

被引:11
|
作者
Wu, Zhenkun [1 ]
Li, Peng [1 ]
Zhang, Yanbo [1 ]
Guo, Hao [1 ]
Gu, Yuzong [1 ]
机构
[1] Henan Univ, Sch Phys & Elect, Inst Nano Photon Mat & Applicat, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
optical vortex; fractional Schrodinger equation; topological charges; wave propagation; DIFFERENCE SCHEME; OPTICAL VORTICES; SOLITONS; BEAMS; DISLOCATIONS; EVOLUTION; LATTICES;
D O I
10.1088/2040-8986/ab4112
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study analytically and numerically investigates the evolution of an optical vortex beam carrying topological charges (TCs) in a fractional Schrodinger equation with competing nonlocal nonlinearities. Results show that the number of beads, TCs, and size of the incident beam significantly affect vortex production and evolution. Common rules formulated based on various incident beams determine the number of induced vortices and corresponding rotation direction. The beams gradually expand to induce vortices in oppositely charged pairs during propagation, thus conserving the vortex's net TC. The demonstrated optical vortex is significant for quantum information communication and optical imaging and processing applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Generation of multiple solitons using competing nonlocal nonlinearities
    Jisha, Chandroth P.
    Beeckman, Jeroen
    Van Acker, Frederik
    Neyts, Kristiaan
    Nolte, Stefan
    Alberucci, Alessandro
    OPTICS LETTERS, 2019, 44 (05) : 1162 - 1165
  • [42] Dark and singular optical solitons with competing nonlocal nonlinearities
    Zhou, Qin
    Liu, Lan
    Zhang, Huijuan
    Mirzazadeh, Mohammad
    Bhrawy, Ali H.
    Zerrad, Essaid
    Moshokoa, Seithuti
    Biswas, Anjan
    OPTICA APPLICATA, 2016, 46 (01) : 79 - 86
  • [43] Gap solitons under competing local and nonlocal nonlinearities
    Kuo, Kuan-Hsien
    Lin, YuanYao
    Lee, Ray-Kuang
    Malomed, Boris A.
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [44] Supermode spatial solitons via competing nonlocal nonlinearities
    Jung, Pawel S.
    Karpierz, Miroslaw A.
    Trippenbach, Marek
    Christodoulides, Demetrios N.
    Krolikowski, Wieslaw
    PHOTONICS LETTERS OF POLAND, 2018, 10 (02) : 33 - 35
  • [45] Modulational instability and solitons in nonlocal media with competing nonlinearities
    Esbensen, B. K.
    Wlotzka, A.
    Bache, M.
    Bang, O.
    Krolikowski, W.
    PHYSICAL REVIEW A, 2011, 84 (05)
  • [46] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    CHAOS SOLITONS & FRACTALS, 2020, 137
  • [47] Fractional Schrodinger Equations with Logarithmic and Critical Nonlinearities
    Fan, Hai Ning
    Zhang, Bin Lin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (02) : 285 - 325
  • [48] On fractional Schrodinger equations with Hartree type nonlinearities
    Cingolani, Silvia
    Gallo, Marco
    Tanaka, Kazunaga
    MATHEMATICS IN ENGINEERING, 2022, 4 (06): : 1 - 33
  • [49] Collapse in the nonlocal nonlinear Schrodinger equation
    Maucher, F.
    Skupin, S.
    Krolikowski, W.
    NONLINEARITY, 2011, 24 (07) : 1987 - 2001
  • [50] Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation
    Bezerra, Flank D. M.
    Carvalho, Alexandre N.
    Dlotko, Tomasz
    Nascimento, Marcelo J. D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 336 - 360