Inexact Newton-Kantorovich Methods for Constrained Nonlinear Model Predictive Control

被引:7
|
作者
Dontchev, Asen L. [1 ,2 ]
Huang, Mike [3 ]
Kolmanovsky, Ilya V. [4 ]
Nicotra, Marco M. [4 ]
机构
[1] Amer Math Soc, Providence, RI 02904 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Toyota Motor North Amer, Res & Dev, Ann Arbor, MI 48105 USA
[4] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
基金
澳大利亚研究理事会; 美国国家科学基金会; 奥地利科学基金会;
关键词
Constrained systems; control engineering computing; inexact Newton-Kantorovich method; linear convergence; Newton method; nonlinear dynamical systems; nonlinear model predictive control; optimal control; quadratic programming; strong regularity; TIME ITERATION SCHEME; OPTIMIZATION; STABILITY;
D O I
10.1109/TAC.2018.2884402
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider Newton-Kantorovich type methods for solving control-constrained optimal control problems that appear in model predictive control. Conditions for convergence are established for an inexact version of the Newton-Kantorovich method applied to variational inequalities. Based on these results, two groups of algorithms are proposed to solve the optimality system. The first group includes exact and inexact Newton and Newton-Kantorovich implementations of the sequential quadratic programming. In the second group, exact and inexact Newton and Newton-Kantorovich methods are developed for solving a nonsmooth normal map equation equivalent to the optimality system. Numerical simulations featuring examples from the aerospace and automotive domain are presented, which show that inexact Newton-Kantorovich type methods can achieve significant reduction of the computational time.
引用
收藏
页码:3602 / 3615
页数:14
相关论文
共 50 条
  • [31] Lifted Newton-Type Optimization for Pseudospectral Methods in Nonlinear Model Predictive Control
    Quirynen, Rien
    Diehl, Moritz
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3927 - 3932
  • [32] Chance constrained nonlinear model predictive control
    Xie, Lei
    Li, Pu
    Wozny, Guenter
    ASSESSMENT AND FUTURE DIRECTIONS OF NONLINEAR MODEL PREDICTIVE CONTROL, 2007, 358 : 295 - +
  • [33] APPLICATION OF NEWTON-KANTOROVICH METHODS, FORMULA MANIPULATION TO OPTIMAL CONTROL PROBLEMS OF MAXIMUM PRINCIPLE TYPE - OPTIMAL SPACE TRAJECTORY EXAMPLE
    HANSON, JN
    SIAM REVIEW, 1973, 15 (01) : 255 - &
  • [34] A New Lagrange-Newton-Krylov Solver for PDE-constrained Nonlinear Model Predictive Control
    Christiansen, Lasse Hjuler
    Jorgensen, John Bagterp
    IFAC PAPERSONLINE, 2018, 51 (20): : 325 - 330
  • [35] RECONSTRUCTION OF PERMITTIVITY PROFILE FOR STRATIFIED DIELECTRIC MATERIAL: GEL'FAND-LEVITAN AND NEWTON-KANTOROVICH METHODS
    Alexin, S.
    Drobakhin, O.
    Tkachenko, V.
    2008 INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, 2008, : 141 - 143
  • [36] The convergence analysis of inexact Gauss–Newton methods for nonlinear problems
    Jinhai Chen
    Computational Optimization and Applications, 2008, 40 : 97 - 118
  • [37] Inexact Newton methods for the steady state analysis of nonlinear circuits
    Guglielmi, N
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (01): : 43 - 57
  • [38] ON APPROXIMATE SOLUTION OF ONE CLASS OF NONLINEAR TWO-DIMENSIONAL SINGULAR INTEGRAL EQUATIONS BY NEWTON-KANTOROVICH METHOD
    Musaev, Binali I.
    Mamedova, Natavan P.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2007, 27 (35): : 57 - 68
  • [39] Constrained model predictive control for a class of nonlinear systems
    Park, Ju H.
    Jung, H. Y.
    Kwon, O. M.
    Lee, S. M.
    COMPUTER COMMUNICATION AND MANAGEMENT, 2011, 5 : 400 - 404
  • [40] Constructive model predictive control for constrained nonlinear systems
    He, De-Feng
    Ji, Hai-Bo
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2008, 29 (06): : 467 - 481