Surface-Enhanced Raman Scattering Based on Au-DNA-Ag Plasmonic Nanoparticles

被引:1
|
作者
Moghaddam, Seyed Enayatollah Taghavi [1 ]
Emami, Farzin [1 ]
机构
[1] Shiraz Univ Technol, Dept Elect & Elect Engn, Shiraz 7155713876, Fars, Iran
关键词
Surface-Enhanced Raman Scattering (SERS); Au-DNA-Ag; Plasmonic Nanoparticles;
D O I
10.1166/jno.2020.2855
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The dependence of the Surface-Enhanced Raman Scattering (SERS) by gold and silver nanoparticles on their shape is examined using the organic dye, as a probe molecule. SERS has been explored extensively for applications in sensing and imaging, but the design and optimization of efficient substrates are still challenging. In order to understand and optimize the SERS process in nanoparticles, gold and silver Nanospheres and their composition as gold-DNA-silver nanoparticle were synthesized and characterized according to their average size, zeta potential and UV/visible absorption. In fact, in this research, an asymmetric new plasmonic nano-particle is proposed and designed as gold-DNA-silver and is compared to gold, silver, gold-DNA-gold, and silver-DNA-silver nanoparticles. With the help of this new nanoparticle, we design and recommend a Raman booster so that the effect of Raman is improved noticeably. It will be shown that using the proposed asymmetric nano-particle of gold-DNA-silver, the absorbance, and intensity of Raman booster is improved noticeably. In suspensions of equal nano-particle and dye concentration, the SERS effect increases as gold DNA-silver, clearly indicating that control over the number of local field hotspots can optimize the SERS efficiency. Notably, it is demonstrated that the SERS intensity per nanoparticle scales with the magnitude of IP: 111 93 14 78 On: Wed 27 Jan 2021 11:33:06 the SPR absorbance at the excitatin wavelength (785 nm), providing a clear guide to optimization of the Copyright: Amer can Scient fic Publishers process experimentally.
引用
收藏
页码:1307 / 1311
页数:5
相关论文
共 50 条
  • [11] Surface-Enhanced Raman Scattering from Individual Au Nanoparticles on Au Films
    Du, ChaoLing
    Du, ChaoJun
    You, YuMeng
    He, CongJun
    Luo, Jian
    Shi, DaNing
    PLASMONICS, 2012, 7 (03) : 475 - 478
  • [12] Surface-Enhanced Raman Scattering from Individual Au Nanoparticles on Au Films
    ChaoLing Du
    ChaoJun Du
    YuMeng You
    CongJun He
    Jian Luo
    DaNing Shi
    Plasmonics, 2012, 7 : 475 - 478
  • [13] Preparation of Au-Ag, Ag-Au core-shell bimetallic nanoparticles for surface-enhanced Raman scattering
    Yang, Yong
    Shi, Jianlin
    Kawamura, Go
    Nogami, Masayuki
    SCRIPTA MATERIALIA, 2008, 58 (10) : 862 - 865
  • [14] Surface-enhanced Raman scattering from plasmonic Ag-nanocube@Au-nanospheres core@satellites
    Huang, Zhulin
    Meng, Guowen
    Huang, Qing
    Chen, Bin
    Lu, Yilin
    Wang, Zhaoming
    Zhu, Xiaoguang
    Sun, Kexi
    JOURNAL OF RAMAN SPECTROSCOPY, 2017, 48 (02) : 217 - 223
  • [15] Surface-enhanced Raman scattering study of Ag@PPy nanoparticles
    Ye, Sunjie
    Fang, Li
    Qing, Xutang
    Lu, Yun
    JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (10) : 1119 - 1123
  • [16] Surface-enhanced Raman scattering (SERS) from Au:Ag bimetallic nanoparticles: the effect of the molecular probe
    Fan, Meikun
    Lai, Feng-Ju
    Chou, Hung-Lung
    Lu, Wan-Ting
    Hwang, Bing-Joe
    Brolo, Alexandre G.
    CHEMICAL SCIENCE, 2013, 4 (01) : 509 - 515
  • [17] Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surface-Enhanced Raman Scattering Detection
    Contreras-Caceres, Rafael
    Pastoriza-Santos, Isabel
    Alvarez-Puebla, Ramon A.
    Perez-Juste, Jorge
    Fernandez-Barbero, Antonio
    Liz-Marzan, Luis M.
    CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (31) : 9462 - 9467
  • [18] Green and Controllable Synthesis of Au-Ag Bimetal Nanoparticles by Xylan for Surface-Enhanced Raman Scattering
    Cai, Jihai
    Li, Yichen
    Liu, Chuanfu
    Wang, Xiaoying
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (18): : 15154 - 15162
  • [19] Preparation of Au/Ag core-shell nanoparticles and its surface-enhanced Raman scattering effect
    Ji, XH
    Wang, LY
    Zhang, XT
    Bai, YB
    Li, TJ
    Zhi, ZZ
    Kong, XG
    Liu, YC
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2002, 23 (12): : 2357 - 2359
  • [20] Ag-clad Au nanoparticles: Novel aggregation, optical, and surface-enhanced Raman scattering properties
    Freeman, RG
    Hommer, MB
    Grabar, KC
    Jackson, MA
    Natan, MJ
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (02): : 718 - 724