Dynamic properties of methane, water and methane hydrates using computational simulations

被引:3
|
作者
Castillo-Borja, F. [1 ]
Vazquez-Roman, R. [2 ]
Bravo-Sanchez, U. I. [1 ]
机构
[1] Inst Tecnol Aguascalientes, Dept Ingn Quim, Aguascalientes 20256, Ags, Mexico
[2] Inst Tecnol Celaya, Dept Ingn Quim, Celaya 38010, Gto, Mexico
关键词
methane hydrate; molecular dynamics; vibrational spectrum; autocorrelation functions; MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; HIGH-PRESSURE; CLATHRATE HYDRATE; MOTIONS; EQUILIBRIUM; LIQUIDS; SPECTRA;
D O I
10.1080/08927020903196930
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the vibrational spectrum of methane hydrates is calculated through dynamic molecular simulations based on two different methods. The spectra obtained using the proposed procedure allow the differentiation of the contributions of different inter- and intramolecular motion types in the spectrum, which cannot be produced with the traditional method based on atomic velocities. Simulations were carried out at different composition, pressure and temperature conditions to observe the effect of these variables on the vibrational spectrum. The proposed method allowed the observation of a difference in the frequencies for the C-H stretching vibrations between small and large cavities, which agrees with reported experimental values.
引用
收藏
页码:229 / 239
页数:11
相关论文
共 50 条
  • [31] The effect of flexibility on thermodynamic and structural properties in methane hydrates
    Castillo-Borja, Florianne
    Vazquez-Roman, Richart
    Bravo-Sanchez, Ulises
    MOLECULAR SIMULATION, 2008, 34 (07) : 661 - 670
  • [32] Storage of Methane in Clathrate Hydrates: Monte Carlo Simulations of sI Hydrates and Comparison with Experimental Measurements
    Papadimitriou, Nikolaos I.
    Tsimpanogiannis, Ioannis N.
    Economou, Loannis G.
    Stubos, Athanassios K.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2016, 61 (08): : 2886 - 2896
  • [33] Thermodynamic properties of methane/water interface predicted by molecular dynamics simulations
    Sakamaki, Ryuji
    Sum, Amadeu K.
    Narumi, Tetsu
    Ohmura, Ryo
    Yasuoka, Kenji
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (14):
  • [34] The kinetic modeling of methane hydrate growth by using molecular dynamic simulations
    Naeiji, Parisa
    Varaminian, Farshad
    Rahmati, Mahmoud
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 142
  • [35] Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations
    Jiang, H.
    Jordan, K. D.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (12): : 5555 - 5564
  • [36] Adaptive modeling of methane hydrates
    Peszynska, Malgorzata
    Torres, Marta
    Trehu, Anne
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 709 - 717
  • [37] VIBRATIONAL SPECTRA OF METHANE HYDRATES
    Giricheva, N. I.
    Ishchenko, A. A.
    Yusupov, V. I.
    Bagratashvili, V. N.
    Girichev, G. V.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2014, 57 (12): : 17 - +
  • [38] Experimental determination and modeling of methane hydrates in mixtures of acetone and water
    Mainusch, S
    Peters, CJ
    Arons, JD
    Javanmardi, J
    Moshfeghian, M
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1997, 42 (05): : 948 - 950
  • [39] Decarbonization of Europe and methane hydrates
    Such, Piotr
    NAFTA-GAZ, 2020, (10): : 696 - 700
  • [40] Self-preservation of methane hydrates produced in “dry water”
    V. P. Mel’nikov
    L. S. Podenko
    A. N. Nesterov
    A. O. Drachuk
    N. S. Molokitina
    A. M. Reshetnikov
    Doklady Chemistry, 2016, 466 : 53 - 56