Solutions for a singular critical growth problem with a weight

被引:13
|
作者
Han, Pigong [1 ]
Liu, Zhaoxia
机构
[1] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Cent Univ Nationalities, Sch Math & Comp Sci, Beijing 100081, Peoples R China
关键词
semilinear elliptic equation; variational functional; Palais-Smale condition; critical exponent;
D O I
10.1016/j.jmaa.2006.04.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider some semilinear elliptic equations with Hardy potential. By using linking theorem in [P. Rabinowitz, Minimax Methods in Critical Points Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 19861 and analyzing the effect of nonlinearities, we establish the existence of nontrivial solutions. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1075 / 1085
页数:11
相关论文
共 50 条
  • [41] Solutions for a quasilinear elliptic problem with indefinite nonlinearity with critical growth
    Costa, Gustavo S. A.
    Figueiredo, Giovany M.
    Junior, Jose Carlos O.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (24) : 1 - 19
  • [42] Existence and multiplicity of solutions for a class of elliptic problem with critical growth
    Claudianor O. Alves
    Luciano M. Barros
    Monatshefte für Mathematik, 2018, 187 : 195 - 215
  • [43] Solutions for a nonlocal problem involving a Hardy potential and critical growth
    Wang, Chunhua
    Yang, Jing
    Zhou, Jing
    JOURNAL D ANALYSE MATHEMATIQUE, 2021, 144 (01): : 261 - 303
  • [44] Solutions for a nonlocal problem involving a Hardy potential and critical growth
    Chunhua Wang
    Jing Yang
    Jing Zhou
    Journal d'Analyse Mathématique, 2021, 144 : 261 - 303
  • [45] Existence and multiplicity of solutions for a class of elliptic problem with critical growth
    Alves, Claudianor O.
    Barros, Luciano M.
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (02): : 195 - 215
  • [46] Multiplicity of solutions for critical singular problems
    Assuncao, Ronaldo B.
    Carriao, Paulo Cesar
    Miyagaki, Olimpio Hiroshi
    APPLIED MATHEMATICS LETTERS, 2006, 19 (08) : 741 - 746
  • [47] Numerical solutions of the singular vortex problem
    Kravtsov, Sergey
    Reznik, Gregory
    PHYSICS OF FLUIDS, 2019, 31 (06)
  • [48] Nonuniqueness of solutions for a singular diffusion problem
    Yao, Zheng'an
    Zhou, Wenshu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 183 - 204
  • [49] On the Solutions of the Problem for a Singular Ergodic Control
    Yen-Lin Wu
    Zhi-You Chen
    Journal of Optimization Theory and Applications, 2017, 173 : 746 - 762