Predicting Spatio-temporal Time Series Using Dimension Reduced Local States

被引:13
|
作者
Isensee, Jonas [1 ,2 ]
Datseris, George [1 ,2 ]
Parlitz, Ulrich [1 ,2 ]
机构
[1] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
[2] Georg August Univ Gottingen, Inst Dynam Komplexer Syst, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
关键词
Data driven modelling; Nearest neighbours prediction; Spatio-temporal chaos; DYNAMICS; MODEL;
D O I
10.1007/s00332-019-09588-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method for both cross-estimation and iterated time series prediction of spatio-temporal dynamics based on local modelling and dimension reduction techniques. Assuming homogeneity of the underlying dynamics, we construct delay coordinates of local states and then further reduce their dimensionality through Principle Component Analysis. The prediction uses nearest neighbour methods in the space of dimension reduced states to either cross-estimate or iteratively predict the future of a given frame. The effectiveness of this approach is shown for (noisy) data from a (cubic) Barkley model, the Bueno-Orovio-Cherry-Fenton model, and the Kuramoto-Sivashinsky model.
引用
收藏
页码:713 / 735
页数:23
相关论文
共 50 条
  • [31] Improvement of Spatio-Temporal Inconsistency of Time Series Land Cover Products
    Zhu, Ling
    Liu, Jun
    Jiang, Shuyuan
    Zhang, Jingyi
    SUSTAINABILITY, 2024, 16 (18)
  • [32] Identifying Propagating Signals with Spatio-Temporal Clustering in Multivariate Time Series
    Huewel, Jan David
    Schlake, Georg Stefan
    Albrechts, Kevin
    Beecks, Christian
    SIMILARITY SEARCH AND APPLICATIONS, SISAP 2024, 2025, 15268 : 207 - 214
  • [33] Spatio-Temporal Consistency for Multivariate Time-Series Representation Learning
    Lee, Sangho
    Kim, Wonjoon
    Son, Youngdoo
    IEEE ACCESS, 2024, 12 : 30962 - 30975
  • [34] STformer: Spatio-Temporal Transformer for Multivariate Time Series Anomaly Detection
    Li, Zhengyu
    Zhang, Hongjie
    Zheng, Wei
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT VI, 2024, 15021 : 297 - 311
  • [35] Spatio-Temporal Attention with Symmetric Kernels for Multivariate Time Series Forecasting
    Roy, Swagato Barman
    Yuan, Miaolong
    Fang, Yuan
    Sett, Myo Kyaw
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 21 - 26
  • [36] Gait recognition using spatio-temporal templates and local moments
    Chen Shi
    Guo Qiuli
    Gao Youxing
    ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, PROCEEDINGS, 2007, : 631 - 635
  • [37] Measures of spatio-temporal accuracy for time series land cover data
    Tsutsumida, Narumasa
    Comber, Alexis J.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 41 : 46 - 55
  • [38] Faithful Spatio-Temporal Disocclusion Filling using Local Optimization
    Schmeing, Michael
    Jiang, Xiaoyi
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 3799 - 3802
  • [39] Face Detection in Video Using Local Spatio-temporal Representations
    Martinez-Diaz, Yoanna
    Hernandez, Noslen
    Mendez-Vazquez, Heydi
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 860 - 867
  • [40] Spatio-Temporal Estimation of Rice Height Using Time Series Sentinel-1 Images
    Yang, Huijin
    Li, Heping
    Wang, Wei
    Li, Ning
    Zhao, Jianhui
    Pan, Bin
    REMOTE SENSING, 2022, 14 (03)