Predicting Spatio-temporal Time Series Using Dimension Reduced Local States

被引:13
|
作者
Isensee, Jonas [1 ,2 ]
Datseris, George [1 ,2 ]
Parlitz, Ulrich [1 ,2 ]
机构
[1] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
[2] Georg August Univ Gottingen, Inst Dynam Komplexer Syst, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
关键词
Data driven modelling; Nearest neighbours prediction; Spatio-temporal chaos; DYNAMICS; MODEL;
D O I
10.1007/s00332-019-09588-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method for both cross-estimation and iterated time series prediction of spatio-temporal dynamics based on local modelling and dimension reduction techniques. Assuming homogeneity of the underlying dynamics, we construct delay coordinates of local states and then further reduce their dimensionality through Principle Component Analysis. The prediction uses nearest neighbour methods in the space of dimension reduced states to either cross-estimate or iteratively predict the future of a given frame. The effectiveness of this approach is shown for (noisy) data from a (cubic) Barkley model, the Bueno-Orovio-Cherry-Fenton model, and the Kuramoto-Sivashinsky model.
引用
收藏
页码:713 / 735
页数:23
相关论文
共 50 条
  • [1] Predicting Spatio-temporal Time Series Using Dimension Reduced Local States
    Jonas Isensee
    George Datseris
    Ulrich Parlitz
    Journal of Nonlinear Science, 2020, 30 : 713 - 735
  • [2] Dimension-Reduced Modeling of Spatio-Temporal Processes
    Brynjarsdottir, Jenny
    Berliner, L. Mark
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (508) : 1647 - 1659
  • [3] Local dimension-reduced dynamical spatio-temporal models for resting state network estimation
    Vieira G.
    Amaro E.
    Baccalá L.A.
    Brain Informatics, 2015, 2 (2) : 53 - 63
  • [4] An association measure for spatio-temporal time series
    Kappara, Divya
    Bose, Arup
    Bhattacharjee, Madhuchhanda
    METRIKA, 2023,
  • [5] Temporal Dependencies and Spatio-Temporal Patterns of Time Series Models
    Islam, Md. Khairul
    THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21, 2024, : 23391 - 23392
  • [6] Spatio-Temporal Characterization in Satellite Image Time Series
    Radoi, Anamaria
    Datcu, Mihai
    2015 8TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTI-TEMP), 2015,
  • [7] Chaotic Time Series Prediction using Spatio-Temporal RBF Neural Networks
    Sadiq, Alishba
    Ibrahim, Muhammad Sohail
    Usman, Muhammad
    Zubair, Muhammad
    Khan, Shujaat
    2018 3RD INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING, SCIENCES AND TECHNOLOGY (ICEEST), 2018,
  • [8] Predicting Future Spatio-Temporal States Using a Robust Causal Graph Attention Model
    Wang, Peixiao
    Zhang, Hengcai
    Lu, Feng
    SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2024, 2024, 14619 : 242 - 251
  • [9] High Spatio-Temporal Resolution Deformation Time Series With the Fusion of InSAR and GNSS Data Using Spatio-Temporal Random Effect Model
    Liu, Ning
    Dai, Wujiao
    Santerre, Rock
    Hu, Jun
    Shi, Qiang
    Yang, Changjiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01): : 364 - 380
  • [10] Towards Spatio-Temporal Aware Traffic Time Series Forecasting
    Cirstea, Razvan-Gabriel
    Yang, Bin
    Guo, Chenjuan
    Tung Kieu
    Pan, Shirui
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 2900 - 2913