FOREST BIOMASS RETRIEVAL FROM BIOSAR 2010 P-BAND SAR DATA USING A REGRESSION-BASED MODEL

被引:0
|
作者
Blomberg, E. [1 ]
Soja, M. J. [1 ]
Ulander, L. M. H. [1 ]
机构
[1] Chalmers, S-41296 Gothenburg, Sweden
关键词
Biomass retrieval; boreal forest; P-band; synthetic aperture radar (SAR); topographic correction; BACKSCATTER;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A model for retrieval of boreal forest biomass from polarimetric P-band SAR images developed using the BioSAR 2007 and BioSAR 2008 data sets is revisited and evaluated using data from BioSAR 2010. Incorporating the HV backscatter component as well as the HH/VV ratio and the ground slope, the model is noteworthy as performing well when retrieving biomass values in Remningstorp using parameters trained in Krycklan. These two Swedish test sites are separated by 720 km and represent two different types of boreal forest as well varying topography. SAR images and biomass estimates obtained from Remningstorp in 2010 provides an opportunity to test the model further. This dataset results in a qualitative reproduction of the previous result, showing the expected changes due to forest management, but with a relative overestimation of biomass. A large part of this can be explained by the timing as the new acquisitions took place during early autumn instead of spring with the associated changes in moisture conditions.
引用
收藏
页码:4193 / 4195
页数:3
相关论文
共 50 条
  • [21] MEASUREMENTS OF FOREST CHANGE USING P-BAND SAR BACKSCATTER
    Sandberg, G.
    Ulander, L. M. H.
    Fransson, J. E. S.
    Soja, M. J.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1652 - 1655
  • [22] Analysis of forest biomass variation in the Amazon and its' influence on the response of P-band SAR polarimetric data
    dos Santos, JR
    de Araujo, LS
    Freitas, CDC
    Soler, LD
    Gama, FF
    Dutra, LV
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY IV, 2003, 4879 : 252 - 259
  • [23] L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest
    Sandberg, G.
    Ulander, L. M. H.
    Fransson, J. E. S.
    Holmgren, J.
    Le Toan, T.
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (11) : 2874 - 2886
  • [24] Forest height retrieval using P-band airborne multi-baseline SAR data: A novel phase compensation method
    Lu, Hongliang
    Zhang, Heng
    Fan, Huaitao
    Liu, Dacheng
    Wang, Jili
    Wan, Xiangxing
    Zhao, Lei
    Deng, Yunkai
    Zhao, Fengjun
    Wang, Robert
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 175 : 99 - 118
  • [25] SCINTILLATION IMPACTS ON THE BIOMASS P-BAND SPACE-BASED SAR
    Rogers, Neil
    Quegan, Shaun
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6400 - 6403
  • [26] Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions
    Schlund, Michael
    Davidson, Malcolm W. J.
    REMOTE SENSING, 2018, 10 (07)
  • [27] Forest Biophysical Parameter Estimation Using L- and P-Band Polarimetric SAR Data
    Garestier, Franck
    Dubois-Fernandez, Pascale C.
    Guyon, Dominique
    Le Toan, Thuy
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (10): : 3379 - 3388
  • [28] Estimation of basal area from Amazon tropical rain forest using airborne P-band SAR data
    Santos, JR
    Araujo, LS
    Dutra, LV
    Freitas, CC
    Mura, JC
    Gama, FF
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1008 - 1010
  • [29] RETRIEVAL OF TERRAIN TOPOGRAPHY IN TROPICAL FORESTS USING P-BAND SAR TOMOGRAPHY
    d'Alessandro, Mauro Mariotti
    Tebaldini, Stefano
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8598 - 8600
  • [30] The impacts of spatial baseline on forest canopy height model and digital terrain model retrieval using P-band PolInSAR data
    Liao, Zhanmang
    He, Binbin
    van Dijk, Albert I. J. M.
    Bai, Xiaojing
    Quan, Xingwen
    REMOTE SENSING OF ENVIRONMENT, 2018, 210 : 403 - 421