Semiparametric estimation of mean and variance functions for non-Gaussian data

被引:15
|
作者
Nott, David [1 ]
机构
[1] Univ New S Wales, Dept Stat, Sydney, NSW 2052, Australia
关键词
overdispersion modelling; double exponential models; generalized linear models; variance estimation;
D O I
10.1007/s00180-006-0017-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Flexible modelling of the response variance in regression is interesting for understanding the causes of variability in the responses, and is crucial for efficient estimation and correct inference for mean parameters. In this paper we describe methods for mean and variance estimation where the responses are modelled using the double exponential family of distributions and mean and dispersion parameters are described as an additive function of predictors. The additive terms in the model are represented by penalized splines. A simple and unified computational methodology is presented for carrying out the calculations required for Bayesian inference in this class of models based on an adaptive Metropolis algorithm. Application of the adaptive Metropolis algorithm is fully automatic and does not require any kind of pretuning runs. The methodology presented provides flexible methods for modelling heterogeneous Gaussian data, as well as overdispersed and underdispersed count data. Performance is considered in a variety of examples involving real and simulated data sets.
引用
收藏
页码:603 / 620
页数:18
相关论文
共 50 条
  • [41] Parameter estimation for non-Gaussian autoregressive processes
    Beadle, ER
    Djuric, PM
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3557 - 3560
  • [42] IDENTIFICATION AND ESTIMATION OF NON-GAUSSIAN ARMA PROCESSES
    LII, KS
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (07): : 1266 - 1276
  • [43] A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data
    Kim, Jae Kwang
    Yu, Cindy Long
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 157 - 165
  • [44] Robust variance estimators in application to segmentation of measurement data distorted by impulsive and non-Gaussian noise
    Witulska, Justyna
    Zaleska, Anna
    Kremzer-Osiadacz, Natalia
    Wylomanska, Agnieszka
    Jablonski, Ireneusz
    MEASUREMENT, 2025, 239
  • [45] A Polynomial Estimation of Measurand Parameters for Samples of Non-Gaussian Symmetrically Distributed Data
    Warsza, Zygmunt L.
    Zabolotnii, Serhii W.
    AUTOMATION 2017: INNOVATIONS IN AUTOMATION, ROBOTICS AND MEASUREMENT TECHNIQUES, 2017, 550 : 468 - 480
  • [46] Improved estimation in a non-Gaussian parametric regression
    Pchelintsev E.
    Statistical Inference for Stochastic Processes, 2013, 16 (1) : 15 - 28
  • [47] PARAMETER-ESTIMATION IN NON-GAUSSIAN NOISE
    CONSTABLE, CG
    GEOPHYSICAL JOURNAL-OXFORD, 1988, 94 (01): : 131 - 142
  • [48] Group Symmetry and non-Gaussian Covariance Estimation
    Soloveychik, Ilya
    Wiesel, Ami
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 1105 - 1108
  • [49] State estimation in the presence of non-Gaussian noise
    Plataniotis, KN
    Venetsanopoulos, AN
    IEEE 2000 ADAPTIVE SYSTEMS FOR SIGNAL PROCESSING, COMMUNICATIONS, AND CONTROL SYMPOSIUM - PROCEEDINGS, 2000, : 230 - 235
  • [50] Improving variance function estimation in semiparametric longitudinal data analysis
    Leng, Chenlei
    Tang, Cheng Yong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 656 - 670