PARP Inhibitors in Small-Cell Lung Cancer: Rational Combinations to Improve Responses

被引:37
|
作者
Knelson, Erik H. [1 ]
Patel, Shetal A. [2 ]
Sands, Jacob M. [1 ]
机构
[1] Dana Farber Canc Inst, Boston, MA 02215 USA
[2] Univ N Carolina, Dept Med, Sch Med, Chapel Hill, NC 27599 USA
关键词
SCLC; PARP; DDR; ICB; synthetic lethality; SLFN11; STING;
D O I
10.3390/cancers13040727
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Small-cell lung cancer carries a dismal prognosis with few long-term treatment options. The enzyme poly-(ADP)-ribose polymerase (PARP), which functions to repair DNA breaks, has emerged as a promising therapeutic target, with modest response rates in early clinical trials prompting investigation of predictive biomarkers and therapeutic combinations. This review summarizes the development and testing of PARP inhibitors in small-cell lung cancer with an emphasis on developing treatment combinations. These combinations can be divided into three categories: (1) contributing to DNA damage; (2) inhibiting the DNA damage response; and (3) activating the immune system. An evolving classification of small-cell lung cancer subtypes and gene expression patterns will guide PARP inhibitor biomarker identification to improve treatments for this challenging cancer. Despite recent advances in first-line treatment for small-cell lung cancer (SCLC), durable responses remain rare. The DNA repair enzyme poly-(ADP)-ribose polymerase (PARP) was identified as a therapeutic target in SCLC using unbiased preclinical screens and confirmed in human and mouse models. Early trials of PARP inhibitors, either alone or in combination with chemotherapy, showed promising but limited responses, suggesting that selecting patient subsets and treatment combinations will prove critical to further clinical development. Expression of SLFN11 and other components of the DNA damage response (DDR) pathway appears to select for improved responses. Combining PARP inhibitors with agents that damage DNA and inhibit DDR appears particularly effective in preclinical and early trial data, as well as strategies that enhance antitumor immunity downstream of DNA damage. A robust understanding of the mechanisms of DDR in SCLC, which exhibits intrinsic replication stress, will improve selection of agents and predictive biomarkers. The most effective combinations will target multiple nodes in the DNA damage/DDR/immune activation cascade to minimize toxicity from synthetic lethality.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 50 条
  • [31] Treatment of small-cell lung cancer
    Mennecier, B
    Dansin, E
    REVUE DES MALADIES RESPIRATOIRES, 2004, 21 (01) : 171 - 174
  • [32] Pathology of small-cell lung cancer
    K. Junker
    Th. Wiethege
    K.-M. Müller
    Journal of Cancer Research and Clinical Oncology, 2000, 126 : 361 - 368
  • [33] Radiotherapy for small-cell lung cancer
    Laber, DA
    NEW ENGLAND JOURNAL OF MEDICINE, 1999, 340 (25): : 2003 - 2003
  • [34] Treatment of small-cell lung cancer
    Reck, M.
    Bohnet, S.
    INTERNIST, 2011, 52 (02): : 130 - +
  • [35] SMALL-CELL LUNG-CANCER
    HINSON, JA
    PERRY, MC
    CA-A CANCER JOURNAL FOR CLINICIANS, 1993, 43 (04) : 216 - 225
  • [36] Management of small-cell lung cancer
    Thatcher, N
    Faivre-Finn, C
    Lorigan, P
    ANNALS OF ONCOLOGY, 2005, 16 : 235 - 239
  • [37] MANAGEMENT OF SMALL-CELL CANCER OF THE LUNG
    HANSEN, HH
    LANCET, 1992, 339 (8797): : 846 - 849
  • [38] Surgery for Small-Cell Lung Cancer
    Anraku, Masaki
    Waddell, Thomas K.
    SEMINARS IN THORACIC AND CARDIOVASCULAR SURGERY, 2006, 18 (03) : 211 - 216
  • [39] Surgery for small-cell lung cancer
    Al Zreibi, C.
    Gibault, L.
    Fabre, E.
    Le Pimpec-Barthes, F.
    REVUE DES MALADIES RESPIRATOIRES, 2021, 38 (08) : 840 - 847
  • [40] MET and Small-Cell Lung Cancer
    Gelsomino, Francesco
    Rossi, Giulio
    Tiseo, Marcello
    CANCERS, 2014, 6 (04) : 2100 - 2115