CONDITIONAL PERCOLATION ON ONE-DIMENSIONAL LATTICES

被引:5
|
作者
Axelson-Fisk, Marina [1 ]
Haggstrom, Olle [1 ]
机构
[1] Chalmers Univ Technol, SE-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Conditional percolation; stochastic domination; one-dimensional lattice; Markov chain; CLUSTER; WALK;
D O I
10.1239/aap/1261669588
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conditioning independent and identically distributed bond percolation with retention parameter p on a one-dimensional periodic lattice on the event of having a bi-infinite path from -infinity to infinity is shown to make sense, and the resulting model exhibits a Markovian structure that facilitates its analysis. Stochastic monotonicity in p turns out to fail in general for this model, but a weaker monotonicity property does hold: the average edge density is increasing in p.
引用
收藏
页码:1102 / 1122
页数:21
相关论文
共 50 条
  • [21] Solitons in One-Dimensional Lattices with a Flat Band
    Bercioux, Dario
    Dutta, Omjyoti
    Rico, Enrique
    ANNALEN DER PHYSIK, 2017, 529 (09)
  • [22] Governing soliton splitting in one-dimensional lattices
    Fratalocchi, A
    Assanto, G
    PHYSICAL REVIEW E, 2006, 73 (04):
  • [23] Spin dynamics in one-dimensional optical lattices
    Zhang, Huirong
    Zhai, Yueyang
    Chen, Xuzong
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (02)
  • [24] Diffraction by one-dimensional paracrystals and perturbed lattices
    Millane, RP
    Eads, JL
    ACTA CRYSTALLOGRAPHICA SECTION A, 2000, 56 : 497 - 506
  • [25] Topological superconductors in one-dimensional mosaic lattices
    Zeng, Qi-Bo
    Lu, Rong
    You, Li
    EPL, 2021, 135 (01)
  • [26] Connes' distance function on one-dimensional lattices
    Dimakis, A
    Muller-Hoissen, F
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (03) : 907 - 913
  • [27] One-dimensional optical lattices and impenetrable bosons
    Cazalilla, M.A.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 67 (05): : 536061 - 536064
  • [28] Lifting of Gibbs states in one-dimensional lattices
    Meson, Alejandro
    Vericat, Fernando
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2011, 14 (01) : 1 - 13
  • [29] On the anomalous thermal conductivity of one-dimensional lattices
    Lepri, S
    Livi, R
    Politi, A
    EUROPHYSICS LETTERS, 1998, 43 (03): : 271 - 276
  • [30] Adiabaticity and Localization in One-Dimensional Incommensurate Lattices
    Edwards, E. E.
    Beeler, M.
    Hong, Tao
    Rolston, S. L.
    PHYSICAL REVIEW LETTERS, 2008, 101 (26)