A Class of Variational-Hemivariational Inequalities for Bingham Type Fluids

被引:18
|
作者
Migorski, Stanislaw [1 ,2 ]
Dudek, Sylwia [3 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Jagiellonian Univ Krakow, Chair Optimizat & Control, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Krakow Univ Technol, Fac Comp Sci & Telecommun, Dept Appl Math, Ul Warszawska 24, PL-31155 Krakow, Poland
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2022年 / 85卷 / 02期
基金
欧盟地平线“2020”;
关键词
Bingham type fluid; Variational-hemivariational inequality; Generalized subgradient; Leak and slip condition; Optimal control; FINITE-ELEMENT APPROXIMATION; GENERALIZED NEWTONIAN FLUID; BOUNDARY-CONDITIONS; STOKES EQUATIONS; WEAK SOLUTIONS; ERROR-BOUNDS; EXISTENCE; REGULARITY; FLOWS; MODEL;
D O I
10.1007/s00245-022-09855-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate a new class of elliptic variational-hemivariational inequalities without the relaxed monotonicity condition of the generalized subgradient. The inequality describes the mathematical model of the steady state flow of incompressible fluid of Bingham type in a bounded domain. The boundary condition represents a generalization of the no leak condition, and a multivalued and nonmonotone version of a nonlinear Navier-Fujita frictional slip condition. The analysis provides results on existence of solution to a variational-hemivariational inequality, continuous dependence of the solution on the data, existence of solutions to optimal control problems, and the dependence of the solution on the yield limit. The proofs profit from results of nonsmooth analysis and the theory of multivalued pseudomontone operators.
引用
收藏
页数:29
相关论文
共 50 条
  • [11] A Mixed Finite Element Approach for A Variational-Hemivariational Inequality of Incompressible Bingham Fluids
    Tan, Xin
    Chen, Tao
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [12] A class of generalized mixed variational-hemivariational inequalities II: Applications
    Migorski, Stanislaw
    Bai, Yunru
    Zeng, Shengda
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 50 : 633 - 650
  • [13] Continuous Dependence and Optimal Control for a Class of Variational-Hemivariational Inequalities
    Jiang, Caijing
    Zeng, Biao
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 82 (02): : 637 - 656
  • [14] CONVERGENCE OF SOLUTIONS TO INVERSE PROBLEMS FOR A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Migorski, Stanislaw
    Zeng, Biao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10): : 4477 - 4498
  • [15] EXISTENCE OF SOLUTIONS TO A NEW CLASS OF COUPLED VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Bai, Yunru
    Migórski, Stanislaw
    Nguyen, Van Thien
    Peng, Jianwen
    Journal of Nonlinear and Variational Analysis, 2022, 6 (05): : 499 - 516
  • [16] VARIATIONAL-HEMIVARIATIONAL INEQUALITIES ON UNBOUNDED DOMAINS
    Kristaly, Alexandru
    Varga, Csaba
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (02): : 3 - 87
  • [17] EXISTENCE OF SOLUTIONS TO A NEW CLASS OF COUPLED VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
    Bai, Y. U. N. R. U.
    Migorski, Stanislaw
    Nguyen, Van Thien
    Peng, J. I. A. N. W. E. N.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2022, 6 (05): : 499 - 516
  • [18] On a class of variational-hemivariational inequalities involving set valued mappings
    Costea, Nicusor
    Lupu, Cezar
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2010, 1 (02) : 233 - 246
  • [19] Well-posedness for a Class of Variational-Hemivariational Inequalities with Perturbations
    Xiao, Yi-bin
    Huang, Nan-jing
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (01) : 33 - 51
  • [20] A CLASS OF VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO FRICTIONAL CONTACT PROBLEMS
    Han, Weimin
    Migorski, Stanislaw
    Sofonea, Mircea
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) : 3891 - 3912