RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection

被引:96
|
作者
Fan, Lue [1 ,3 ,4 ,6 ]
Xiong, Xuan [2 ]
Wang, Feng [2 ]
Wang, Naiyan [2 ]
Zhang, Zhaoxiang [1 ,3 ,4 ,5 ]
机构
[1] Chinese Acad Sci CASIA, Inst Automat, Beijing, Peoples R China
[2] TuSimple, Beijing, Peoples R China
[3] Univ Chinese Acad Sci UCAS, Beijing, Peoples R China
[4] Natl Lab Pattern Recognit NLPR, Beijing, Peoples R China
[5] HKISI CAS, Ctr Artificial Intelligence & Robot, Hong Kong, Peoples R China
[6] UCAS, Sch Future Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV48922.2021.00291
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an anchor-free single-stage LiDAR-based 3D object detector - RangeDet. The most notable difference with previous works is that our method is purely based on the range view representation. Compared with the commonly used voxelized or Bird's Eye View (BEV) representations, the range view representation is more compact and without quantization error. Although there are works adopting it for semantic segmentation, its performance in object detection is largely behind voxelized or BEV counterparts. We first analyze the existing range-view-based methods and find two issues overlooked by previous works: 1) the scale variation between nearby and far away objects; 2) the inconsistency between the 2D range image coordinates used in feature extraction and the 3D Cartesian coordinates used in output. Then we deliberately design three components to address these issues in our RangeDet. We test our RangeDet in the large-scale Waymo Open Dataset (WOD). Our best model achieves 72.9/75.9/65.8 3D AP on vehicle/pedestrian/cyclist. These results outperform other range-view-based methods by a large margin, and are overall comparable with the state-of-the-art multi-view-based methods.
引用
收藏
页码:2898 / 2907
页数:10
相关论文
共 50 条
  • [41] Towards Universal LiDAR-Based 3D Object Detection by Multi-Domain Knowledge Transfer
    Wu, Guile
    Cao, Tongtong
    Liu, Bingbing
    Chen, Xingxin
    Ren, Yuan
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 8635 - 8644
  • [42] 3D Object Detection Based on LiDAR Data
    Sahba, Ramin
    Sahba, Amin
    Jamshidi, Mo
    Rad, Paul
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 511 - 514
  • [43] Towards Robust Lidar-based 3D Detection and Tracking of UAVs
    Abir, Tasnim Azad
    Kuantama, Endrowednes
    Han, Richard
    Dawes, Judith
    Mildren, Rich
    Phuc Nguyen
    PROCEEDINGS OF THE DRONET IX WORKSHOP 9TH ACM WORKSHOP ON MICRO AERIAL VEHICLE NETWORKS, SYSTEMS, AND APPLICATIONS, DRONET IX 2023, 2023, : 1 - 7
  • [44] 3D LIDAR-based Ground Segmentation
    Chen Tongtong
    Dai Bin
    Liu Daxue
    Zhang Bo
    Liu Qixu
    2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 446 - 450
  • [45] Curricular Object Manipulation in LiDAR-based Object Detection
    Zhu, Ziyue
    Meng, Qiang
    Wang, Xiao
    Wang, Ke
    Yan, Liujiang
    Yang, Jian
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1125 - 1135
  • [46] SCDA-Net: Structure Completion and Density Awareness Network for LiDAR-Based 3D Object Detection
    Wu, Shuwen
    Yang, Jinfu
    Ma, Jiaqi
    Zhang, Shaochen
    Hao, Tianhao
    Li, Mingai
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (05): : 4268 - 4275
  • [47] On Onboard LiDAR-Based Flying Object Detection
    Vrba, Matous
    Walter, Viktor
    Pritzl, Vaclav
    Pliska, Michal
    Baca, Tomas
    Spurny, Vojtech
    Hert, Daniel
    Saska, Martin
    IEEE TRANSACTIONS ON ROBOTICS, 2025, 41 : 593 - 611
  • [48] SF-UDA3D: Source-Free Unsupervised Domain Adaptation for LiDAR-Based 3D Object Detection
    Saltori, Cristiano
    Lathuiliere, Stephane
    Sebe, Nicu
    Ricci, Elisa
    Galasso, Fabio
    2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 771 - 780
  • [49] LiDAR-Based All-Weather 3D Object Detection via Prompting and Distilling 4D Radar
    Chae, Yujeong
    Kim, Hyeonseong
    Oh, Changgyoon
    Kim, Minseok
    Yoon, Kuk-Jin
    COMPUTER VISION - ECCV 2024, PT LVI, 2025, 15114 : 368 - 385
  • [50] A LIDAR-BASED 3D INDOOR MAPPING FRAMEWORK WITH MISMATCH DETECTION AND OPTIMIZATION
    Wang, Zhiyong
    Liu, Weiquan
    Wen, Chenglu
    Shi, Yongfei
    Yan, Xiaocheng
    Tan, Jinbin
    Wang, Cheng
    Li, Jonathan
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7499 - 7502