Homotopically trivial actions on aspherical spaces and topological rigidity of free actions

被引:0
|
作者
Sadowski, M [1 ]
机构
[1] UNIV GDANSK,DEPT MATH,PL-80952 GDANSK,POLAND
关键词
homotopically trivial actions; free actions; aspherical spaces;
D O I
10.1016/0166-8641(96)00011-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let rho: G --> Homeo(X) be a homotopically trivial action of a compact commutative Lie group on a connected, finitistic, aspherical topological space. We associate with rho a certain set of homotopical invariants. Using them we introduce the notion of pi(1)-freeness, pi(1)-conjugacy and pi(1)-effectiveness. We check that rho is free if and only if it is pi(1)-free. Applying the rigidity theorems of ET. Farrell and L. Jones we prove that pi(1)-conjugate, homotopically trivial, smooth, and free actions of G on appropriate aspherical manifolds are topologically conjugate. Using this we show that the number of topological conjugacy classes of free and smooth Z(k)-actions that are homotopic to a given free Z(k)-action on a closed infrasolvmanifold M it is not greather than k(rankZ(pi 1(M))Zk).
引用
收藏
页码:79 / 93
页数:15
相关论文
共 50 条
  • [41] The index of free circle actions in lens spaces
    Jaworowski, J
    TOPOLOGY AND ITS APPLICATIONS, 2002, 123 (01) : 125 - 129
  • [42] Local rigidity for actions of Kazhdan groups on noncommutative Lp-spaces
    Bekka, Bachir
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (08)
  • [43] TOPOLOGICAL CHARACTERISTIC CLASSES FOR GROUP-ACTIONS ON SINGULAR SPACES
    CAPPELL, S
    SHANESON, J
    WEINBERGER, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (05): : 293 - 295
  • [44] TOPOLOGICAL STABILITY AND SHADOWING PROPERTY FOR GROUP ACTIONS ON METRIC SPACES
    Yang, Yinong
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 439 - 449
  • [45] (Isometric) universality and actions of spaces, continuously containing topological groups
    Iliadis, S. D.
    Sadovnichy, Yu. V.
    TOPOLOGY AND ITS APPLICATIONS, 2023, 329
  • [46] Topological R-entropy and topological entropy of free semigroup actions
    Zhu, Li
    Ma, Dongkui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (02) : 1056 - 1069
  • [47] Continuous functions on primal topological spaces induced by group actions
    Mejias, Luis Fernando
    Vielma, Jorge
    Aponte, Elvis
    De Lima, Lourival Rodrigues
    AIMS MATHEMATICS, 2025, 10 (01): : 793 - 808
  • [49] Abstract almost periodicity for group actions on uniform topological spaces
    Lenz, Daniel
    Spindeler, Timo
    Strungaru, Nicolae
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (03): : 798 - 829
  • [50] TOPOLOGICAL ENTROPY OF FREE SEMIGROUP ACTIONS FOR NONCOMPACT SETS
    Ju, Yujun
    Ma, Dongkui
    Wang, Yupan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) : 995 - 1017