The Minimal Growth Rate of Cocompact Coxeter Groups in Hyperbolic 3-space

被引:7
|
作者
Kellerhals, Ruth [1 ]
Kolpakov, Alexander [1 ]
机构
[1] Univ Fribourg, Dept Math, Fribourg Perolles, Switzerland
关键词
Hyperbolic Coxeter group; growth rate; Salem number; KLEINIAN GROUP; SALEM-NUMBERS; VOLUME; POLYHEDRA; LATTICES; SERIES;
D O I
10.4153/CJM-2012-062-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Due to work of W. Parry it is known that the growth rate of a hyperbolic Coxeter group acting cocompactly on H-3 is a Salem number. This being the arithmetic situation, we prove that the simplex group (3,5,3) has the smallest growth rate among all cocompact hyperbolic Coxeter groups, and that it is, as such, unique. Our approach provides a different proof for the analog situation in H-2 where E. Hironaka identified Lehmer's number as the minimal growth rate among all cocompact planar hyperbolic Coxeter groups and showed that it is (uniquely) achieved by the Coxeter triangle group (3,7).
引用
收藏
页码:354 / 372
页数:19
相关论文
共 50 条
  • [21] HYPERBALL PACKINGS IN HYPERBOLIC 3-SPACE
    Szirmai, Jeno
    MATEMATICKI VESNIK, 2018, 70 (03): : 211 - 221
  • [22] On the quandles of isometries of the hyperbolic 3-space
    Kai, Ryoya
    GEOMETRIAE DEDICATA, 2025, 219 (02)
  • [23] CMC surfaces in the hyperbolic 3-space
    Yu, ZH
    Li, ZQ
    CHINESE SCIENCE BULLETIN, 1998, 43 (07): : 547 - 550
  • [24] Flat fronts in hyperbolic 3-space
    Kokubu, M
    Umehara, M
    Yamada, K
    PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (01) : 149 - 175
  • [25] Growth Rates of 3-dimensional Hyperbolic Coxeter Groups are Perron Numbers
    Yukita, Tomoshige
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (02): : 405 - 422
  • [26] Constant mean curvature surfaces in hyperbolic 3-space via loop groups
    Dorfmeister, Josef F.
    Inoguchi, Jun-ichi
    Kobayashi, Shimpei
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 686 : 1 - 36
  • [27] Congruent and non-congruent hyperball packings related to doubly truncated Coxeter orthoschemes in hyperbolic 3-space
    Szirmai, Jeno
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (02) : 437 - 459
  • [28] Minimal n-noids in hyperbolic and anti-de Sitter 3-space
    Bobenko, Alexander I.
    Heller, Sebastian
    Schmitt, Nicholas
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2227):
  • [29] A CHARACTERIZATION OF COCOMPACT HYPERBOLIC AND FINITE-VOLUME HYPERBOLIC GROUPS IN DIMENSION-3
    CANNON, JW
    COOPER, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (01) : 419 - 431
  • [30] Rotational Weingarten surfaces in hyperbolic 3-space
    Dursun, Ugur
    JOURNAL OF GEOMETRY, 2020, 111 (01)